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Preface

In the paper the author attempts to assess the fatigue life of chosen welded
joints. It focuses especially on chosen problems that accompany determi-
nation of the fatigue life of welded joints, taking into consideration the
strain energy density parameter. Chapter 2 describes the welded joint as a
stress concentrator. The state of stress and strain in the notch are described
and theoretical and fatigue coefficients are indicated. The fatigue coeffi-
cient of the notch effect is estimated on the basis of fictitious radius in the
notch root. Chapter 3 presents a model of fatigue life assessment under
uniaxial stress state with statistical handling of data presented. The new
energy model of fatigue life assessment, which rests upon the analysis of
stress and strain in the critical plane, is described in detail in chapter 4. The
principle of such a description is presented in the uniaxial as well as in bi-
axial state of loading. Chapter 5 contains the analysis of tests of four mate-
rials subjected to different loadings: cyclic, variable-amplitude with Gaus-
sian distribution, and variable amplitude with Gaussian distribution and
overloading for symmetric and pulsating loading. The analysis is based on
the determined fatigue characteristics for all the considered materials.
Chapter 6 shows the application of the model in the fatigue life assessment
in the complex state of loading (bending with torsion of flange-tube and
tube-tube joints) based on fatigue research of steel and aluminum welded
joints carried out in well-known German centres. Proportional and out-of-
proportional cyclic research are carried out. Additionally, the influence of
various bending and torsion frequencies and proportional and out-of-
proportional variable amplitude loadings are analysed.

Dealing with such a complicated problem as fatigue life of welded joints
is requires a wide cooperation with other researchers and research centres.
That is why I would like to express his gratitude to at least some of the
people who contributed to the issue of this publication. This book is a re-
sult of my research work, considerations and discussions while my six-
months stay at LBF Darmstadt, Germany, financed by NATO. Thus, I
would like to thank all the workers of LBF, especially Prof. C.M. Sonsino
[218] and Dr. M. Kiippers for many discussions, access for their test results,
laboratories and library while my visit, and for information sent in our cor-
respondence. 1 was able to complete my book while my later two-week
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stay in Darmstadt, financed by DAAD. In this book, I also used some data
obtained from Technical University of Clausthal, Germany, namely from
Prof. H. Zenner. I want to thank Prof. Zenner, Prof. A.Esderts and Mr.
A.Ahmadi for their help while my one-week visit at TU of Clausthal, fi-
nanced by CESTIL

I also used my experience obtained during my work with the postgradu-
ate students at Opole University of Technology: Dr. Damian Kardas, Dr.
Krzysztof Kluger, Ms Malgorzata Kohut, Dr. Pawet Ogonowski, Dr. Jacek
Stowik and Ms Karolina Walat. I must also thank my co-workers from
Opole University of Technology: Dr. Adam Niestony, Dr. Aleksander
Karolczuk, Dr. Roland Pawliczek, and especially Prof. Ewald Macha, also
some other people not mentioned here. I would like to thank Ms Ewa Hel-
leniska for translation of this book and some previous papers into English.
Finally, I want to thank Prof. M. Skorupa and Prof. K. Rosochowicz for
their suggestions and advice.

I wish to dedicate this book to my wife Bozena for supporting me in my
research work as well as for her constant understanding and care.

Tadeusz Lagoda

t.lagoda@po.opole.pl

Department of Mechanics and Machine Design
Faculty of Mechanical Engineering

Opole University of Technology

ul. Mikolajczyka 5

45-271 Opole, Poland
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contraction

coefficient containing circumferential stresses in the root of the
notch

longitudinal modulus of elasticity (Young’s modulus)
frequency

shear modulus

ratio of allowable stresses for bending and torsion for a given
number of cycles N,

fatigue notch coefficient

theoretical notch coefficient

theoretical notch coefficient for axial loading

theoretical notch coefficient for bending
theoretical notch coefficient for torsion
number of stress cycles up to fracture
slope of fatigue S-N characteristic curve

moment

number of cycles

force

correlation coefficient

stress ratio

yield point

tensile strength

coefficient of multiaxiality, standard deviation
fatigue damage degree in observation time T

time, thickness of sheet
scatter band for life-time

mean scatter band for life-time
observation time

strain energy density parameter
angle of the plane position
shear strain

normal strain
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X Notation

o) phase displacement angle
Y% Poisson ratio

p radius in the welding notch root
c normal stress

T shear stress

Oxyz xyz co-ordinate system with the origin in the point O
Indices

a amplitude

af fatigue limit

b bending

cal calculation

e elastic

eq equivalent

exp experimental

f fictitious

| local

m mean value

max maximum value

min minimum value

n nominal

p plastic

t torsion

X,y,Zz  directions of axes of the co-ordinate system
w weighed value

Functions
1 for x>0
sgn(x) =40 for x=0
-1 for x<0
sgn(x)+sgn
sen(x,y) = (x) +sgn(y)

2
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1 Introduction

The problem of determination of fatigue life of welded joints has been in-
vestigated for many years. As a result, there is a possibility to find solution
of that issue in many publications. Typical handbooks concerning funda-
mentals of machine building are for example [33, 194], other books and
monographs [45, 53, 199, 203, 204, 215, 216, 234 and others] or the latest
work [44], to mention some. The problem has been also discussed in many
journal publications and presented in conferences. Only few of publications
have been cited in this paper. During the last 15 years, the in-depth analy-
sis of the problem of fatigue life calculations has been presented in many
books and other publications [40]. The author of this monograph refers to
the most important of them [4, 5, 40, 73, 100, 166, 176, 233].

Correct design of welded joints seems to be very important, for example
in transport facilities, including hoisting equipment [84, 167] where special
safety regulations must be fulfilled, or in the structures with high pressure
of a medium [186].

According to [176, 232], in order to define the fatigue life in welded
joints, there are two basic approaches possible to determine calculation
stresses: first — on the basis of the nominal stresses, and second — on the
basis of the strictly local stresses determined in the potential point of crack
initiation (“hot spot”).

Analysis based on the nominal stresses is applicable in the situation
where the considered element has been classified and when the stresses
can be easily determined. In [233], Susmel and Tovo presented satisfactory
results of many calculations of welded joints based on nominal stresses
under constant-amplitude loading.

The hot spot method is recommended for the cases where the strains
can be measured near the joint [42, 176], or if the strains can be calcu-
lated with the finite element method. In [31] Dang Van et al., on the basis
of the analysis of more than 200 fatigue tests of different steels (low- and
high-strength) and different geometries of welded joints, founded that fa-
tigue life of welded joints, calculated on the basis of stresses determined
with the hot spot method [177, 178], is not strongly influenced by types
of the materials joined. It is observable particularly for a number of cy-
cles greater than 5-10°. In the case of a lower number of cycles, for
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2 1 Introduction

higher-strength materials, the permissible stresses are higher than for nor-
mal steels. It is important to draw attention to the fact that the notch coeffi-
cients for high-strength steels are greater than those for low-strength steels
[224]. Thus, it is interesting to analyse relation between strength of normal
steels and higher-strength steels in the local notation, i.e. including the
theoretical notch coefficient. The safe fatigue life of the butt joints is
higher than that of the fillet joints. Maddox [166] claims that good results
can be obtained for nominal stresses but, in his opinion, the hot spot
method should be developed in future. Principles of local stress determina-
tion according to the hot spot method are presented in Fig. 1.1. The local
stresses can be defined from strains determined by extrapolation using two
or three tensometers, or calculated with the finite element method.

If the local approach for welded joints subjected to multiaxial loading is
applied, it is necessary to know the stress concentration for bending and tor-
sion (Ky,, Ky) at the fusion edge [165, 217, 220, 221]. Because of the fact that
it is usually not possible to measure the actual radius of the fusion edge, in
order to solve this problem, a suitable method is necessary. For welded joints
subjected to uniaxial loading, the problem has been successfully solved ow-
ing to the application of so-called fictitious radius or, in other words, conven-
tional radius [202, 208], based on the Neuber theory [173, 174]. Local meth-
ods for determination of fatigue life of welded joints under multiaxial fatigue
were reviewed by Labesse-Jied [89]. The calculated fatigue lives of welded
joints made of C45 steel and subjected to proportional and non-proportional
random tension-compression with torsion loading were located in the scatter
band of coefficient 4. The analysis was done on the basis of local stresses
with plastic strains. The method using the conventional radius in the notch
root can be applied for determination of the theoretical notch coefficient in

s T

= —>

.

Fig. 1.1. Determination of strains with the hot-spot method
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1 Introduction 3

the case when the notch radius in the welded joint is small and tends to zero.
In this paper, this method is considered for complex loading.

Similar to the Neuber’s method based on the fictitious radius in the
notch root, is the method proposed by Lawrence et al. (for example in
[98]). In this model, determination of the maximum fatigue coefficient of
stress concentration Kgy,, is suggested. That value is determined for the
critical radius in the notch root, equal to the critical value a* dependent on
the material. It took the values from about 0.1 mm for welds made of high-
alloy steels to 0.25 for low-alloy steels.

Another method of determination of geometric stresses, next applied for
fatigue life calculations, was presented by Xiao and Yamada [246]. It was
proposed by them to perform calculations with the use of stresses occur-
ring 1 mm from the point of contact on the surface of the joined materials.

In [225] and [38, 47], Sonsino et al. claim that in practice damages
should be accumulated on the assumption that the sum of damages accord-
ing to the Palmgren-Miner hypothesis is D = 0.5. In [5], on the basis of the
results of the tests under non-sinusoidal variable loading of the welded
joints in bridges, at the drilling platforms or steel chimneys, it was ob-
served that the sum of fatigue damages was D < 1. In [50], rough steel
welded joints were subjected to variable-amplitude loading and it was
found that damage accumulation in the considered joints varied about D =
1, and for the machined welded joints D = 0.33. In [96], Lahti found that
the damage sum for variable-amplitude loading was less than 1. In [168],
Mayer et al. stated that the experimental life was usually 3.5 times less
than the life calculated according to the Palmgren-Miner fatigue damage
accumulation hypothesis. Thus, it can be assumed that the damage sum is
included in (0.33—1) according to various test results.

Standard recommendations referred to calculations of welded joints can
be found in Eurocode 3 [38, 207], or the standards of the International Institute
of Welding (ITW) [48] (for steels), and Eurocode 9 [39] (aluminium alloys).

In [12], typical fatigue diagrams for welded joints under axial loading
(or bending) and torsion with constant inclination coefficients are pre-
sented (see Fig. 1.2).

In present paper two models of fatigue life estimation, based on stresses
and the strain energy density parameter are presented.

For the uniaxial loading state (bending or axial loading), the model us-
ing local stresses was discussed. This model includes a value of the theo-
retical notch coefficient. As stated before, on the basis of [177, 178], it can
be said that fatigue life of steel welded joints does not depend on a kind of
material. In Chap. 3, there is a model of fatigue life assessment under
uniaxial stress state with statistical handling of data presented. Chapter 5
contains the analysis of tests of four materials subjected to different
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4 1 Introduction

N;¢ cycle

5%10° 108 ’
Fig. 1.2. Standard slopes of stress fatigue graphs for welded joints (o, —normal
stress, T, — shear stress)

loading: cyclic, variable-amplitude with Gaussian distribution, and vari-
able amplitude with Gaussian distribution and overloading for symmetric
and pulsating loading. The analysis was based on the determined fatigue

characteristics for all the considered materials.
Another approach is applied for the complex stress state. When the

stress and strain tensors are determined for the welded joint, it is necessary
to reduce the multiaxial loading state to the equivalent uniaxial state. For
this purpose the fatigue effort criteria based on stress, strain, or the strain
energy density parameter [115, 123, 136, 164] referred to the critical plane
can be used. In Chap. 4, the energy model using the strain energy density
parameter for complex loading was presented. This model includes both
stresses and strains occurring in the material. In [156, 190, 193] it has been
proved that in the case of great number of cycles the stress and energy
models are the most appropriate for fatigue description, and for low num-
bers of cycles the strain and energy models are good. Thus, the energy
model seems to be universal and it was verified many times in many pa-
pers concerning uniaxial loading [13, 14, 55, 59, 64, 65, 66, 83, 102, 103,
105, 106, 122, 136, 154, 179, 180] and complex loading [57, 83, 116, 118,
120, 124, 125, 130, 135, 140, 141, 142, 149, 150, 151, 152, 155, 187, 193].
In this paper, known results obtained for tube-tube and flange-tube joints
under pure bending and torsion and their combination, in- or out-of-phase,
and also for chosen steel welded joints under variable-amplitude loading
[165, 217, 220, 221, 240, 241, 242, 243] and aluminum joints [86, 87, 88,
226] were evaluated. For analysis, some selected criteria based on the en-
ergy parameter for multiaxial fatigue were applied [32, 115, 123, 136, 164,
165, 214, 217, 220, 221].
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2 Welded Joints as the Stress Concentrator

2.1 The Complex Stress State in the Notch

Complex stress concentration characterizes welded joints in which both geo-
metrical and structural notches can be distinguished. In the case of geometrical
notches under simple loading states, e.g. bending or axial loading, on the sur-
face of the element in the notch root the plane stress state occurs. In round
elements, apart from the nominal stress o, the additional circumferential

stress is also observed along the element. It can expressed by a formula

o, =Co

v o 2.1)

where 0 <C <v. For simplification it can be written as

0 for K, =1
C=10+v for K,e(l,2), (2.2)
\% for K;>2

where K, is the stress concentration ratio.
Analysing the results of calculations performed in LBF Darmstadt by
Sonsino et al., the following equation can be formulated [193, 229]

_ 1.84v
Kq

C

(K, -1V, 2.3)

The coefficient C, defining the values of circumferential stresses depend-
ing on the stress concentration ratio is shown in Fig. 2.1. From the analysis
of the figure it appears that the value of the coefficient C tends to the Pois-
son ratio, v, for K; close to 2 (according to (2.2)).
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6 2 Welded Joints as the Stress Concentrator

It should be also noted that in the case of a sharp notch, the plane stress
state is accompanied by the plane strain state (g, &, = 0, €,). It results from
the adoption of the elastic body model, the generalized Hooke’s law, and
Gy =VOy according to (2.1) and (2.2). For sharp notches, stress distribu-

tions for tension, bending and torsion are shown in Figs. 2.2, 2.3 and 2.4.

v

Value of coefficient C
1

T 7
1 15 2 25 3 Ky 35

Fig. 2.1. Coefficient C versus theoretical stress concentration coefficient

(a)

axial
_ stresses
axial nominal ‘
stresses ..
- stresses
circumferentia
| stresses

transverse |

stresses radial
stresses

Fig. 2.2. Stress distributions in elements with sharp notches under tension: (a) flat
element, (b) cylindrical element

www.iran—mavad.com

Slgo pwigo ole @250



2.1 The Complex Stress State in the Notch 7

(@ (b)
axial .
stresses nominal

stresses radial stresses

,,,,,, circumferential
h stresses

axial
stresses

Fig. 2.3. Stress distributions in elements with sharp notches under bending: (a) flat
element, (b) cylindrical element

local

stresses .
nominal

stresses

Fig. 2.4. Stress and strain distributions in the element with a sharp notch under torsion

Under tension and bending, stress distributions have been shown for
flat and cylindrical elements. In both cases, on the notch root surface
plane stress state is observable. In the case of flat elements, inside the
material, the plane stress state occurs, and in cylindrical elements the
spatial stress state is observed.
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8 2 Welded Joints as the Stress Concentrator

Stress and strain distributions in smooth and notched elements have been
already analysed in [67, 108, 110, 135, 139, 153, 200, 201, 210, 212, 213].
They were used mainly in non-local methods of fatigue life assessment.

2.2 Theoretical Notch Coefficient

The theoretical notch coefficient is defined as

K, =X (2.4)

XXn

According to the Neuber rule, this coefficient can be expressed as the
geometric mean from the stress and strain concentration coefficients

Kt :\IKGKa ’ (25)

which are defined as

e—p
K, =2x (2.6)
GXXI’]
and
K. = ﬂ (2.7)
s B .
€

XXn

where £5,P and o5, are the elastic-plastic strain and the stress in direc-
tion of x axis, respectively.

The notch coefficients can be determined in a numerical way, for exam-
ple with the finite element method, appropriate monograms or suitable
formulas, more or less complicated [171, 181, 183, 184 and 185]. There
are also other models joining nominal and actual stresses [54], but they are
not considered in this book. Up to the yield point, the following relation
takes place

K, =K, =K,. (2.8)
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2.2 Theoretical Notch Coefficient 9

For greater stresses, the known relation is valid [20, 24]
Ks <K, <K, (2.9)

(see Fig. 2.5).

Xiao and Yamada [246] point that the theoretical notch coefficient K
for welded joints can be determined as a product of the weld geometry ac-
tion K, and the influence of structure change in the weld K;, which can be
expressed as

K =K, K.. (2.10)

Influence of K changes in a welded joint was considered by Chen et al. in
[28], and Cheng et al. [29], who tested specimens made of 1Cr—18Ni-9Ti
steel under pure tension, pure torsion, and non-proportional tension with
torsion. In the specimens tested there was no change of geometry in the
joint, i.e. K, = 1. The result scatters for welded joints were greater than
those for the native metal. Under pure tension—compression and pure tor-
sion, the fatigue strength of the weld material was less than that of the na-
tive material. Such a change was not observed under non-proportional ten-
sion with torsion. Thus, the coefficients K, including structure changes
usually are not separately calculated, and it is assumed that

K. =K,. 2.11)

Whereas, the influence of the K coefficient is taken into account during
the determination of fatigue notch performance coefficient. The theoretical
notch performance coefficient K, can be used for transformation of stress

A
K,
KG
K

€ Ks

R, .
~ _

>

Fig. 2.5. Relation between theoretical notch coefficients and stress value
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10 2 Welded Joints as the Stress Concentrator

o-a,n’ Ga
1000 —| MPa local values
- ~
b ~
] ~
7 N
500 -
7 ~
200
nominal values
100 —
N cycles
50 T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII
108 10* 10° 108 107

Fig. 2.6. Transformation of stress amplitudes from nominal to local system

amplitude values from nominal to local system, shown in Fig. (2.6) ac-
cording to (2.4).

2.3 The Fatigue Notch Coefficient

The fatigue notch coefficient K¢[37, 219] is determined by comparison of
stresses in smooth, oy, and notched o, elements

Kp=2sm (2.12)
G not

Interpretation of the coefficient K is shown in Fig. 2.7 [1, 2, 3, 119, 121,
135, 189, 190].

The fatigue notch coefficient is usually determined for 10° cycles, i.e.
[97]
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2.3 The Fatigue Notch Coefficient 11

smooth element

notched element
Ki(Ny)

Ny

>

Fig. 2.7. Comparison of nominal stresses c,, for smooth and notched elements

K, = Gsm(106 cycles)

G ot (106 cycles) '

(2.13)

From Fig. 2.8 it appears that the fatigue notch coefficient increases as a
number of cycles rises. Generally speaking, it can be stated that it is de-
pendent on a number of cycles [20, 43, 197]

K, = 2sm(Np) (2.14)

G ot (Nf) .

Let us derive a relationship [112]

N log[K, (10°)]
Kf(Nf)z(ﬁj > (2.15)

According to this relationship, on the assumption that Ny = 10° cycles, the
fatigue notch coefficient K¢ = 1. However, it is usually given as a constant
value for Ny = 10° cycles (2.13) (see Fig. 2.8). It can be written as

log[Kf(IO(’]
Kf(Nf)sz(1o6)(l%J o (2.16)
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12 2 Welded Joints as the Stress Concentrator

N
cycles

Il |
| T
108 108

v

Fig. 2.8. Fatigue notch coefficient K¢ versus number of cycles N¢

There are many models joining theoretical and fatigue notch coefficients in
the following general form

K¢ = f(Ky). (2.17)

Many papers, among these [175, 247] present relationships among differ-
ent forms of (2.17) for various materials, types of notches and plastic
strains occurring in the notch bottom.

2.4 The Fictitious Radius of the Welding Notch

For determination of notch coefficients the fictitious (conventional) radius
in the notch root is applied. Determination of this radius results from stress
averaging according to the Neuber’s proposal [174]. It is assumed that the
crack initiation is controlled by stress in the notch root averaged in a small
volume of the material, in the point of the maximum stress occurrence. A
suitable material parameter is a substitute microstructural length p.
Stresses in the notch root must be averaged in the interval p in the direc-
tion normal to the surface along this length normal to the notch surface.
Taking into account an actual radius in the notch root and the coefficient of
multiaxiality s, the expression for the fictitious radius in the notch root is
obtained

pr=ptsp. (2.18a)
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2.4 The Fictitious Radius of the Welding Notch 13

For the weld, the worst case can be assumed, i.e. the radius p = 0, which cor-
responds to the crack. Then the calculated fictitious radius is expressed as

pr=sp . (2.18b)

If the radius is known, it is possible to calculate the notch coefficient,
components of the local stress tensor and the corresponding strains. The
fictitious radius also depends on geometry of the specimen and a loading
mode [159, 173, 174, 202, 208] — they should be taken into account under
biaxial bending and torsion (see Table 2.1).

The fictitious notch coefficient p; depends on the actual notch coeffi-
cient p, the substitute microstructural length p~ and the coefficient of mul-
tiaxiality s from Table 2.1 (according to the Neuber’s proposal) resulting
from the stress state multiaxiality in the notch root.

In [229, 230] and some other papers, the authors proposed to determine
the substitute microstructural length ~ according to the following equation

_ 2
P*Iflgéff%7_1] (2.19)

(see Fig. 2.9).

As it was said above, the zero notch radius, p = 0, is often assumed with
p'= 0.4 mm for welded steels, p'= 0.1 mm for aluminium alloys [173, 174,
202, 208] and s = 2.5 for plane specimens, when the Huber-Mises-Hencky
criterion is used. Then, the fictitious radius ps = 1 mm for welded steels
and ps = 0.25 mm for aluminium is obtained, on the basis of which the

Table 2.1. Coefficients of multiaxiality s according to Neuber [173, 174]

Loading axial or bending shearing or torsion
Specimen  plane Round -
Criterion
Huber-Mises-Hencky 2.5 5_2v+ov? 1
2-2v+2v?
Tresca 2 2_v 1
1-v
maximum normal stresses 2 2 1
Beltrami 2-v 2—v 1

1-v
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14 2 Welded Joints as the Stress Concentrator

p*, mm
0.5
0.4
Cast steels and welded joints

0.3
Austenitic steels

0.2
0.1 Al, Cu, Mg alloys
steel

T T >

100 200 300 400 500 600 700
Ro02 MPa

Fig. 2.9. Substitute lengths of microstructure p* for chosen materials and different
yield points

determination of the fatigue notch performance coefficient is possible.
However, in the case of round specimens subjected to bending, on the as-
sumption that the Poisson’s number v =0.3, for welded steels the follow-
ing formula is obtained

_ 2
=04 22V 2V =116 mm (2.20)

2 - 2v+2v?

under torsion the following expression is obtained
ps = 0.4-1 mm = 0.4 mm. (2.21)

for aluminium subjected to bending the following formula is obtained

2
op=0.1 22V 2V =029 mm (2.22)
2-2v+2v
and for torsion
pg=0.1'1 mm= 0.1 mm. (2.23)
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2.5 The Notch Coefficient with the Use of the Fictitious Notch Radius 15

2.5 The Notch Coefficient with the Use of the Fictitious
Notch Radius

Huther et al. [51] considered fillet joints and analysed influence of the an-
gle of weld face inclination ® within (30°-55°), and the radius in the notch
root p within (0.5-3) mm on the fatigue limit. Geometry of such a joint is
shown in Fig. 2.10. When the angle rises under stresses determined ac-
cording to the nominal system, the fatigue limit decreases. The fatigue
limit decreases also as the radius in the notch bottom p increases.

In [172], influence of the weld face inclination (0°-90°) and the transfer
radius (0.6—-0.9) mm on the theoretical notch coefficient was considered.
Greater notch coefficients are obtained for smaller notch radii. For angles
(45°-75°) stabilization of the notch coefficient is observed.

In the weld penetration zone the existence of the fictitious radius in the
notch root can be assumed, keeping the same weld face inclination, and
then it is possible to determine the theoretical notch coefficient K.

Thus, in order to calculate K'y, and K from the fictitious radius in the
notch root p¢ in round specimens, it is necessary to chose separately the fic-
titious radii for welded elements subjected to bending (pg, = 1.16 mm) and
torsion (pg = 0.4 mm), and for elements made of aluminium alloy under
bending (pg, = 0.29 mm) and torsion (pg = 0.1 mm) when the constant an-
gle ® is kept.

N |

Fig. 2.10. Weld joint with the marked angle of weld face inclination ® and the ra-
dius in the notch root p
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3 The Stress Model for the Assessment
of Fatigue Life Under Uniaxial Loading

3.1 Algorithm for the Assessment of Fatigue Life
Under Uniaxial Loading State

Fatigue failure of machine and structure elements caused by service load-
ing often occurs under random stress state. In such a situation, fatigue life
is usually calculated with analytic methods or cycle counting methods. The
analytic methods use spectral analysis of stochastic processes, and the cy-
cle counting methods are based on numerical algorithms of cycle and half-
cycle counting from histories of stress, strain or the energy parameter. The
cycle counting methods include schematization of random loading histo-
ries, damage accumulation and then fatigue life calculation. Schematiza-
tion of random histories includes counting of amplitudes and mean values
of cycles and half-cycles occurring in the loading history.

In order to define fatigue life under random stress states, determination
of the basic fatigue characteristic of the considered material is necessary. It
is defined on the basis of cyclic fatigue tests. The basic characteristics for
great number of cycles are the stress characteristics in the system 6, — Ny,
the so-called S—N characteristics. The first characteristic was elaborated by
Wohler [244] in 1860 in a single logarithmic system

logN¢ =a +bo,. 3.1

In 1910, Basquin [16] proposed a characteristic that can be written in a
double logarithmic system as

logN¢ =a+blogo,. (3.2)
It is necessary to point out that many authors meaning the Basquin charac-

teristic call it the Wohler curve. In 1914, Stromeyer [231] presented an-
other proposal including the fatigue limit
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18 3 Stress Model for the Assessment of Fatigue Life

logN; =a+blog(c, —o,¢). (3.3)

The next proposals were formulated by Corson in 1955 (see [195])

N¢ = Lexp[— C(Ga —Gaf )] (3.4
Ga —Oaf

and Bastenaire in 1974 (see [174, 195]

C
Np =2 e {&J , (3.5)
Ga —Oaf b

Other models were discussed in papers by Palmgren [196], Weibull
(1949), Stiissi (1955) and Bastenaire (1963) (see [173]), Kohout, Véchet
(2001) [81]. However, the most frequently applied is the Basquin model
expressed by (3.2), the so-called S—N fatigue curve.

Under uniaxial loading, fatigue life is calculated according to the algo-
rithm shown in Fig. 3.1 and the stress model [17, 18, 94, 95, 127, 143,
144, 145, 148, 160, 164]. A similar algorithm for uniaxial loading has been
proposed by Gotos [43].

Stage 1
The input data for fatigue life calculations are strain €(t) or stress o (t)
histories, which can be obtained from:

e measurements of actual strains [41] or forces (strain gauges, extensometers,
force gauges). Under uniaxial tension and on the assumption of a

| 1 Measurement, calculation or generation of o(t) |

| 2 Determination of extrema Gp,x joc 30d Gpyin joc |

| 3 Cycle counting G;, Glmi |
|

| 4 Transformation of amplitudes in relation to mean values G,r; |

| 5 Calculation of damage deglree S(T,) |
|

| 6 Calculation of fatigue life T,y |

Fig. 3.1. Algorithm for determination of fatigue life under uniaxial random loading
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3.1 Algorithm for the Assessment of Fatigue Life 19

perfectly elastic body, the relationship between the stress and strain
histories can be written as

o(t) = Ee(t), (3.6)

e previous numerical calculations [85] (FEM - finite element method,
BEM - boundary element method, FDM — finite difference method),

e computer generation of random sequences with shaped probabilistic
characteristics corresponding to service conditions or the predicted
states. Standard programs elaborated in some research centers can be
used for this purpose. Some well-known standards are: WASHI1 for
loading simulation in drilling platforms [49, 205], Broad64 and
MMMOD64 [6] (see also [5]) — for drilling platforms, too, CARLOS
[206] for car wheel loading, wind load [25]. Other possibilities of
generation of signals have been presented, among others, in [26, 52, 85,
170, 198, 211, 236, 245, 248].

Stage 2

At this stage, extrema of the stress history are defined. Under random his-
tory, values of successive extrema are determined. This process includes
observation of the derivative from the history and search of its monotonic
changes, see Fig. 3.2. Figure 3.2 shows some exemplary determined local
minima (2, 4, 6, 8) and extrema (1, 3, 5, 7, 9) in a course fragment.

A
o(t)
MPa

v

~

Fig. 3.2. Determination of local extrema
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20 3 Stress Model for the Assessment of Fatigue Life

Stage 3

In the case of random histories with wide frequency bands, several cycle
counting methods can be applied [80, 238]. The full cycle method in which
half-cycles are not included, and the obtained life is usually overestimated.
However, with the use of three other methods, i.e. the methods of range pairs,
hysteresis loop and rain flow [10, 34, 35], the cycles, half-cycles and their
mean values can be determinated. These three methods usually give similar
results. In practice, the rain flow method (so-called envelope method) is most
often applied. Its scheme is shown in Fig. 3.3. Envelopes are drawn from each
local extremum (maximum or minimum). If the envelope has its beginning at
the local minimum, it ends at the local maximum located opposite the local
minimum, the value of which is lower than the initial minimum. The envelope
beginning at the local minimum 0 ends at the local maximum 3 opposite the
local minimum 4. The same procedure is applied when the envelope begins at
the local maximum. Then it ends at the local minimum opposite the local
maximum, the value of which is higher than the initial maximum. The
envelope beginning at the local maximum 1 ends at the point 2 located
opposite the local maximum 3. Half-cycles should be isolated from the
determined cycles. The half-cycle of the largest span is included between the
global maximum and global minimum (3 and 8). If the local minimum occurs
as the first local minimum, the half-cycle is determined between this local
minimum and the global maximum (0 and 3), and between this global
maximum and the preceding local minimum (3 and 8). One more half-cycle
is obtained between the global minimum and the last local maximum
(8 and 9). The same procedure is applied when the beginning of the cycle
is in the local maximum.

A 3 3 3
o(t)
MPa A 7 7
5 5
1 I o L
e
2l
7‘3 Qo
2 2 [} [}
sl s
9 = I 9

halfcycle
halfcycle

8 8 8
Fig. 3.3. Cycle counting with the rain-flow method [7, 34, 43, 80]
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3.1 Algorithm for the Assessment of Fatigue Life = 21

As it was mentioned above, the rain flow method, so-called envelope
method, allows to define both cycles and half-cycles, which are deter-
mined by suitable envelopes (see Fig. 3.3). This method has been pro-
grammed and cycles are counted by the computer program. The amplitude
0, and the mean value o,,; of a cycle or a half-cycle are determined each
time.

Stage 4

At this stage, transformation of cycle amplitudes o,; takes place in relation
to the occurring mean values 6,,; according to the general equation for the
transformed amplitude, analysed in some previous papers [74, 75, 76, 113,
146, 147],

OaTi — f(cai, Gmi)- (3 7)

There are many models that take into account the influence of mean val-
ues. In this paper, the above transformations have not been widely pre-
sented because of the fact that in welded joints high residual stresses are
often observed and then probable loading with the mean value occurring
while a cycle do not influence the fatigue life.

Stage 5
There are many hypotheses of fatigue damage accumulation (stage 4)
[235] (linear and nonlinear). The linear hypotheses proposed by Palmgren—
Miner [169, 196], Haibach [47] and Serensen-Kogayev [209], Corten-
Dolan [30], Liu-Zenner [99] are most frequently applied.

Damages can be accumulated according to the Palmgren—Miner hy-
pothesis [169, 196], including amplitudes below the fatigue limit and the
coefficienta < 1

j .
Z% for o, >a-o,p
i=1
Spm(To)=1" N{Gafj . (3.9
Gai
0 for o, <a-ouf

www.iran—mavad.com

Slgo pwigo ole @250



22 3 Stress Model for the Assessment of Fatigue Life

Haibach hypothesis [46]

for o, 20,

Sy (T, )= ' , (3.9)

for o, <oy

where [223]:
p =1 for steels and aluminium alloys,
p =2 for casts and sintered steels,

Serensen-Kogayev hypothesis [209]

j n:
> ! — for o, >a-o,p
i=1
Ssk (To)=1" bNO(GafJ . (3.10)
Cai
0 for o, <a-oyuf
where:
k
zcaiti —a:Oyf
b=11 forb> 0.1, (3.11)

Camax — & Ouf

is the Serensen-Kogayev coefficient, connected with a history character,
and

t,=— (3.12)

is frequency of occurrence of particular levels o, in observation time T,
and o, is the general fatigue limit. The relationship (3.11) is valid if the

Oamax

k
following condition is satisfied ° >1land > 0,it; >0.5.

Gaf Camax i=l
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3.1 Algorithm for the Assessment of Fatigue Life 23

Corten-Dolan hypothesis [30]

J .
. ti o for o, >0,p
Scp(To) = IZINI(WJ . (3.13)
Oai
0 for o, <oyf
where
m
c
m’ =(0.8-0.9) m, N, =N0( af j (3.14)
amax
Liu-Zenner hypothesis [99]
J .
‘ ti . for 6, >a-o,p
S12(To )= IZINI(G*‘WJ ., (3.15)
Oai
0 for o, <a-o,f
where
y_ M+ mjy Oaf "
m= ) N1:NO - > (316)
2 Gamax

and my; is a slope of the fatigue curve S—N for fatigue crack initiation.

It is important to note that the models (3.12) and (3.15) act in a similar
way as the Liu-Zenner model, however the Liu-Zenner model explains a
new slope of the fatigue curve.

A model similar to the Serensen-Kogayev proposal was formulated for al-
loys of non-ferrous metals [58]. From calculations, b less or greater than 1 is
obtained, depending on the mean-square weighed amplitude [107, 157]
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24 3 Stress Model for the Assessment of Fatigue Life

! for o, 2a- -0,

m
i=1
Sk (To) =1 b'No(cafj AT
0 for o, <a-oyuf

where a coefficient including a damage degree (D#1) is determined. This
coefficient characterizes the history and takes the form

b'= O-(Nf) ,
(¢

(3.18)

aw

where

Gaw — stress amplitude for the given number of cycles, expressed by the
following equation:

1
chi 2
|

Gaw = for 6, > acys, (3.19)
aw z ni

i

G, — stress amplitude,
n; — a number of stress cycles with amplitude o,;

where: ©,,, — stress amplitude for the given number of cycles.
In the discussed calculations, it was assumed that a number of cycles N
was equal to Ny, so:

G(Nf) = Oyt (320)

Thus, when
Gaw > O(Ng) then b'<l1

Gaw =O0(Ng) then b'=1.
Gaw <O(Ng) then b'>1

The damage degree changes depending on a level and a number of stress
amplitudes. It decreases as the amplitudes increase. Figure 3.4 shows a
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3.1 Algorithm for the Assessment of Fatigue Life =~ 25

log(c,)
4 N b,=1’ Gaw = Oaf

amax
,
b'>1, G,y <Oy

(o .//; i
N N

A0,f [-======-=-mcmmcmmeaan B I

Fig. 3.4. Changes of the coefficient b’ for o(Ng)=o,p

scheme of changes of the coefficient b’ depending on the weighed ampli-
tudes for the S—N curve.

The hypotheses (3.8, 3.9, 3.10, 3.13, 3.15, 3.17) can be written as one
expression:

j .
Hi dla caiZaGaf
s b*N* (05 /0a)"
S(T,) = , (3.21)
k n,
h >, dla o, <acys

i=j+1 N*(Ou¢ /Gai)(zm_p)
where:
S(T,) — material damage degree at time T, according to (3.8, 3.9, 3.10,
3.13,3.15) or (3.17),
n; — a number of cycles with amplitudes o,; inT,,
T, — observation time (for analysis of loadings with variable amplitudes a
number of cycles in one block, Nyo is assumed),
m — exponent of the S—N fatigue curve,
m’ — modified slope coefficient for the S—N fatigue curve for Corten-Dolan
(3.13) and Liu-Zenner (3.17) hypotheses, in another case m'=m,
N, — a number of cycles corresponding to the fatigue limit o,
N* = N, for Corten — Dolan (3.13) and Liu — Zenner (3.17), in another
case N* =N,
k — a number of class intervals of the amplitude histogram (j <k),
a — coefficient allowing to include amplitudes below o, in the damage

accumulation process , (for Haibach (3.9) and Corten-Dolan (3.13) a=1),
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26 3 Stress Model for the Assessment of Fatigue Life

b* — coefficient including history character; for Serensen-Kogayev (3.10)
b* = b, for Kardas-L.agoda [57] (3.17) b*= b, in other cases b* =1,

p — coefficient modifying the fatigue curve according to Haibach for am-
plitudes below the fatigue limit,

h — coefficient for the Haibach hypothesis (3.9) h =1 (for other hypotheses
h=0).

General forms are shown in Fig. 3.5, and method of damage accumulation
according to the Palmgren—Miner rule is presented in Fig. 3.6.

As it was stated before, the assumption of linear summation of fatigue
damage with modifications was proved many times during experiments

a0y,¢

N, N, log(Np

Fig. 3.5. Original Basquin fatigue curve and its modifications for fatigue damage
accumulation

log(c,)
! n o 0i(Gy) ni1(0a1)+ 0;5(0y2)

al 2 Ni(G,) Ny(G,) Ny(0,)

Ox \

log(Np)

Nf; Np

Fig. 3.6. A way of fatigue damage accumulation
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3.2 Statistic Evaluation 27

under uniaxial loading being a stationary stochastic process of normal
probability distribution.

Stage 6
After determination of a damage degree during observation time T, ac-

cording to a general form (3.21), fatigue life is determined

T,
T, =—>. 3.22
cal S (To ) ( )
After determination of the damage degree S(Nyjock) for a number of cy-

cles Nypck in a loading block according to the general formula (3.21), fa-
tigue life is calculated according to the following equation

N
Nt = ——2ock (3.23)
S(Npiock )

3.2 Statistic Evaluation

From references, for example from [96], it appears that for fatigue tests
large scatters are typical. There are scatters of life under a given loading or
scatters of loading (stresses, strains, the strain energy density parameter)
under the given life.

From the paper by Lahti et al. [96] it appears that in the case of life of
welded joints test results are included in the scatter band with the coeffi-
cient about 4 with probability 95%. It is defined as life scatters, i.e.

Tn = Near/Nexp, (3.24)
or inverse of (3.24)
T’ =1/Tx = Nexp/Neat. (3.25)

Ratios (3.22) and (3.25) can be called the scatter band with coefficient Ty.
This scatter band varies depending on materials, loading level and mode,
and it is included within the range from 1.5 for a low number of cycles,
steel and notched specimens to 5 for a level close to the fatigue limit, cast
iron or welded joints. The least scatters are obtained for tension where all
the section area is equally subject to cracking (Fig. 3.7). A little greater
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28 3 Stress Model for the Assessment of Fatigue Life

tension torsion bending

Fig. 3.7. The most loaded parts of the section under different simple loadings

scatters are often obtained under torsion (in the case of notches they are
much greater), where the greatest stresses occur at the perimeter. The
greatest scatters can be observed for bending, where only extreme fibres
are loaded to a highest degree.

In [90, 91, 232], the error of life determination was related to the ex-
perimental life according to the following formula

N -N
p=l el (3.26)

N

exp

In [12] a standard deviation of logarithms of the calculated lives related to
the experimental ones is presented

n

Z (IOg Ncal - log Nexp )2

sy = |42 — . (3.27)

In [21], a scatter of the calculation results related to the experimental re-
sults is considered

Ti00
Ty = 0% (3.28)
TNo90%

where Ty is defined by (3.28), for 10% and 90% of probability of damage,
respectively.

Other authors analyse the stress scatters.

Bellet et al. [19] compare calculated and experimental lives trying to as-
sess efficiency of the models according to the following formula
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3.2 Statistic Evaluation 29

E= 22, (3.29)

Another possibility of stress comparing is proposed by Sonsino and co-
authors in many papers, for example [36, 219, 220, 222, 239] who apply
the following equation:

o(P =10%)

s= ————— for N¢= const. 3.30
o(P=90%) (330

Such a formula includes only 80% calculating points.
Equation (3.30) for life can be written as:

Tn=Ts", (3.31)
and in this case Ty is defined according to (3.31) as:

N (P =10%)

TN, (P=90%) (3:32)

N

There are also models that include scatters of damage degrees analysis (see
[27]), which is similar to (3.23)

D
E=

D

cal — Mexp

D

exp

(3.33)

During the analysis of life scatters the life ratios according to (3.24) or
(3.25), or logarithms of life are usually used, according to

N
E=log —* (3.34)
Ncal
(see [11]).
The mean value of the considered quantity can be defined as
_ 1
E:;ZEi, (3.35)
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30 3 Stress Model for the Assessment of Fatigue Life

and the mean error of the mean value can be defined as

SE=—— (3.36)

where
n — a number of measurements,
s — mean standard deviation.

For determination of the variance the following formula should used

s2 -] i(Ei—E)z, (3.37)

n-l43

and the standard deviation should be determined from variance (3.34)

s=s2, (3.38)

In the case of material fatigue, the significance level is usually assumed at
the minimum level a = 5% or 10%, sometimes even 20%. Thus, the mean
value should be included within the range

— tn-ty.o/2 SE) SE<t(_1y4/2(SE) (3.39)
or
“ o2 SE <t 1) q/208), (3.40)

where t(;,_y) /o — constant from the t-Student’s distribution for the mean

value error SE — (3.36) or the population error s — (3.38).
Constant t(; )/, from the t-Student’s distribution is determined for a

half of the significance level 0/2 because of section of the normal distribu-
tion edges (see Fig. 3.8).
The mean scatter is determined from the following relationship

Ty =10F (3.41)
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0.5 .

0.45

0.35 /\
[\

o )
0.15 / \
AR A

w2 o2
0.05 :
0 H
4 -3 -2 0 1 2 3 4

random variable, z

Fig. 3.8. Normal distribution with sections at significance level a

in the scatter band with the scatter coefficient Ty expressed as
Ty =10%1%/25, (3.42)

For the significance level o/2 = 2.5% and n = 60 (often 20-30 measure-
ments) the scatter band for all population is obtained. It is equal to two
standard deviations (2s) (or maximum 2.2s for 20 measurements), which is
often applied in tests [166] and corresponds to the scatter band with the
coefficient 3. The scatters 3s correspond to a large significance level tend-
ing to zero but they are not applied in fatigue tests [9].
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4 The Energy Model of Fatigue Life Assessment

For the complex loading state the energy model is being proposed. The
model is based on the strain energy density parameter (SEDP) and analy-
ses changes of stress (normal and shear) and strain (normal and shear) in
the critical plane. It also distinguishes tension and compression.

4.1 The Energy Parameter Under Uniaxial Loading

The change of strain energy density, widely used in theory of plasticity, is
also proposed as a parameter of the multiaxial fatigue analysis. Suitability
of this parameter for description of fatigue processes seems to be promis-
ing, especially while formulation of thermal-elastic-plastic models of strain
in the materials subjected to random thermomechanical loading. The mod-
els do not include a division of strain energy density into elastic and plastic
parts, like in case of the parameters proposed by Smith—Watson—Topper
(SWT) [214], Hoffman and Seeger [48], Bergman and Seeger [22]. In the
elastic range, energy can be calculated from

W= %08. 4.1

In the time domain, energy density can be expressed as
W(t)= %G(t)S(t). (4.2)
When the equation is connected with the damage parameter

PSWT = cjmaxgaE’ (43)

where

Omax =Om T 0 4.4
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34 4 The Energy Model of Fatigue Life Assessment

and when the mean value of stress is equal to zero
Omax ™~ Oa, 4.5)

the strain energy density takes the form

= Pour (4.6)
T, .

It should be pointed that parameter Pswr has a dimension of stress. How-
ever, it is expressed as energy per a volume unit, i.e. MJ/m’.
Further modification of the considered parameter can be written as [22]

P = 1/ikcsm +0, isaE 4.7

or for shear stresses and shear strains [48]

PT = VTaYmaXG * (4'8)

In order to distinguish tension and compression in a fatigue cycle, func-
tions sgn[e(t)] and sgn[o(t)] should be substituted to (4.2):

W (1) = o(t)e(t) sgn[e()] + 5 o(t)e(t) sgno(t)] =
1 1 sgn[e(t)+sgn[c(t)] (4.9)
= Lo(t)e(t){sgnle(t)]+ sgn[o(D)]} = L o(t)e(r) EEUENOW]
A two-argument logical function is sensitive to the signs of variables, and

it is defined as

1 when sgn(x)=sgn(y)=1
0.5 when (x=0 and sgn(y)=1) or (y=0 and sgn(x)=1)

sgn(x,y) = w =<0 when sgn(x) =—sgn(y) .
—0.5 when (x=0 and sgn(y)=-1) or (y=0 and sgn(x)=-1)
-1 when sgn(x)=sgn(y)=-1
(4.10)
where

1 when x>0
sgn(x) =70 when x=0. 4.11)
-1 when x<0
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4.1 The Energy Parameter Under Uniaxial Loading 35

After the substitution sgn(x,y) to (4.9) the following formula is obtained
W(t) =L o(t)s(t)sgn[o(t),e(t)]. 4.12)

Equation (4.12) expresses positive and negative values of the strain energy
density parameter in a fatigue cycle and it allows to separate energy (work)
under tension from energy (work) under compression. If the parameter is
positive, it means that the material is subjected to tension. If the parameter
is negative, the material is subjected to compression with energy equal to
this parameter for the absolute value. Equation (4.12) has another advan-
tage: a course of the strain energy density parameter has the zero mean
value, and the cyclic stress and strain have also the expected zero value,
i.e. R =—1. Moreover, when stress or strain reaches zero, (4.9) is equal to
zero, so sgn(Xx, y) = 0.5 does not occur. Thus, (4.10) can be written in the

reduced form

1  when sgn(x) =sgn(y) =1

sgn(x)+sgn(y) _ (4.13)

sgn(x,y) = B 0 when sgn(x) =-sgn(y)

—1 when sgn(x) =sgn(y) =—1.

Figure 4.1a shows a course of the energy parameter according to (4.6), and
the strain energy density parameter, taking into account signs of both stress
and strain for an elastic body. If the signs of stresses and strains are not
taken into account (Fig. 4.1b), a number of cycles with small ranges of en-
ergy parameters (Fig. 4.1b) is doubled and a non-zero mean value is ob-
tained. This model is valid for R =—1.

If cyclic stresses and strains reach their maximum values, ¢, and ¢, ,
then the amplitude of maximum strain energy density parameter — accord-
ing to (4.9) —is

W, =0.50,¢,. (4.14)
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Fig. 4.1.
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Histories of cycle of stress, strain and strain energy density parameter — (4.2)
and strain energy parameter including signs of stress and strain — (4.13)

Assuming - according to (4.9) — that W js the fatigue damage parame-
ter, the standard characteristics of cyclic fatigue can be rescaled and it is

possible to obtain a new characteristic (W, —Ny) for low- and high-cycle

fatigue. Under high-cycle fatigue, when the curve (o, —N;) is applied,

the axis ¢, should be replaced by W, , where

Using the Manson-Coffin-Basquin equation

+

ef = =L@N® e QN
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and (4.14), we obtain the strain energy density parameter

W, :%a[%f(sz)b +e) (2Nf)°}. (4.17)

Equation (4.17) gives a new description of fatigue history, the curve
(W, —Np¢), ie.

_(@p)?

TS (2N ) +0.5¢'¢ o, (2Np)°*e. (4.18)

Under high-cycle fatigue, (4.18) reduces to the following simple form

_ (C"f)2
2 2E

o (0'p)?

w (2N; (2N, ). (4.19)

After finding the logarithm, further reduction takes place and the following
formula is obtained

logN; =A'-m'logW,, (4.20)
where:
1 (o)
A'=——|log———+Db'log?2 |, 4.21
b,[ i g (4.21)
m'= —l (4.22)
b’ '
b'=2b. (4.23)

m=— =2 (4.24)
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38 4 The Energy Model of Fatigue Life Assessment

Under high-cycle fatigue, control of stress and strain are very close, espe-
cially in the case of cyclically stable materials. The constants A’ and m’ in
(4.20) are determined from the fatigue curve S—N, by simple rescaling
(4.18), determined on the basis of tests under controlled strain.

According to (4.15), replacing the stress amplitude by fatigue strength
o,r for a given fatigue life, the strain energy density parameter at the fa-

tigue limit level is obtained

2
(&)

Oaf (4.25)

W.,. =
af F

Introducing the characteristic for shear strains

,CV
Yo = Ef(szf’f +7's 2Np)% (4.26)

a new strain characteristics expressed by the parameter of shear strain en-
ergy density is obtained

(Te)® 2b 1 b
Wa: G Nf +ETfoNf ¢ (427)

or, in the case of elastic strains
logN; =A',—m', logW,, (4.28)

Figure 4.2 shows random histories of stress, strain and the parameter of
normal strain energy density. From this figure it appears that in the case of
the strain energy density parameter and neglecting signs of stresses and
strains (Fig. 4.2¢) the frequency band extension is obtained, and — in con-
sequence — counting a greater number of cycles with mean values different
from zero under the generated zero mean values of stresses and strains
(Fig. 4.2a and b). On the other hand, using the strain energy density pa-
rameter and including signs of stresses and strains (Fig. 4.2d), it is possible
to obtain a history with the zero mean value without extension of the fre-
quency band, like for cyclic loading (Fig. 4.1).
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Fig. 4.2. Random history of stress, strain, strain energy density and normal strain
energy density parameter

4.2 The Energy Parameter Under Multiaxial Loading

Analogous to the case of uniaxial loading state presented in Sect. 4.1 [115,
120, 123,124, 131, 136, 164, 188], the proposed generalized energy crite-
rion is based on the analysis of stresses and the corresponding strains in the
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40 4 The Energy Model of Fatigue Life Assessment

critical plane, taking their signs into account. These criteria were formu-
lated on the basis of previous considerations and papers [15, 82, 104, 111,
115, 117, 123, 129, 133, 134, 135, 137, 191, 192, 193]. The criteria valid
under stress concentration, i.e. including the complex stress state under
uniaxial loading, are presented below.

4.2.1 The Generalized Criterion of the Parameter of Normal and
Shear Strain Energy Density Parameter in the Critical Plane

In the case of the proposed damage parameter under stress concentration
the same assumptions as those for smooth elements can be made.
Fatigue cracking is caused by the part of strain energy density corre-

sponding to work of the normal stress c,(t) on the normal strain e, (1),
ie. W, (t), and work of the shear stress Tns(t) on the shear strain Ens (t) =

0.5Yys (t) in direction s on the plane with normal 7, i.e. Wis t);

1. Direction s on the critical plane coincides with the mean direction of

maximum shear strain energy density Wi smax (03

2. In the limit state, material effort is defined by the maximum value of
linear combination of energy parameters W, (t) and Wns(t), where

energy satisfies the following equation under multiaxial random

loading
max{BWpq (t) + kW, ()} =Q (4.29)
t
or
max{W(t)}=Q, (4.30)
t

where B is the constant for a particular form of (4.29), and k¥ and Q are

material constants determined from sinusoidal simple fatigue tests.

The left sides of (4.29) and (4.30) can be written as maximum at time
W(t) and they should be understood as 100% quantile of a random variable
W. If the maximum value W(t) exceeds Q, then damage accumulation and
failure take place. The random process W(t) can be interpreted as a sto-
chastic process of the material fatigue strength. Positions of unit vectors
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4.2 The Energy Parameter Under Multiaxial Loading 41

N and s are determined with the weight function method, variance

method or damage accumulation method [138].
Selection of constants B, k and Q in (4.29), and the assumed position

of the critical plane leads to particular cases of the generalized criterion.

In special forms of the criterion a complex stress state should be as-
sumed on the surface of the notched element. This is also necessary in the
case of states under simple loading, such as bending or axial loading (ten-
sion-compression).

The equivalent value of the strain energy density parameter is a linear
combination of energy density of normal and shear strains. Participation of

particular energies in the damage process depends on the coefficients P
and x. In each case the scalar product of vectors is o's = 0, where the
vectors are defined as:

n=1,1+m,j+hk, (4.31)

s=li+mj+Ak. (4.32)
The general criterion (4.29) can be written as

max {BW, (0) + kW, (0} = Wi, (4.33)

From (4.33) the equation for the equivalent strain energy density parameter
can be derived

Weq (1) = BW,s (0 + kW, (1), (4.34)
where:
Wi (6) = 0.5% g (D8 (1) 5[t s (1), (0], (4.35)
W, (1)=0.50, (), (D sgnlo, (,&, (V)] (4.36)

and sgn[x,y] is given by (4.13).
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42 4 The Energy Model of Fatigue Life Assessment

Finally, the following expression is obtained

W, (1) = %rm (D, (Dsgn] T, (D&, () |+ gcn(t)sn(t)sgn [0,(.2,1)] (4.37)

Special cases of criterion (4.37) are discussed in the next chapters.

4.2.2 The Criterion of Maximum Parameter of Shear and Normal
Strain Energy Density on the Critical Plane Determined by the
Normal Strain Energy Density Parameter

The critical plane is defined by the normal strain energy density parameter.
It is assumed that Q = W . and the critical plane with normal T is deter-

mined by normal loading, and position of the vector s is determined by
one of the directions defined by the given shear loading.

From the strain and stress states for pure torsion, tension-compression or
bending and under constant-amplitude loading, it is possible to derive rela-
tionships coupling the coefficients § and «.

According to (4.34), the amplitude of the equivalent strain energy can
be written as

Waeq = Bwans + Kwan' 4.3 8)

Under only normal loading the following expression is obtained

2
9

Waeq - Wan - zaEx:X (1-v0O), (4.39)

where C is given by (2.3), and in the case of the sharp notch C =v.
For pure torsion on the plane of maximum tension, particular values of
strain energy density are

W_=0 (4.40)

ans
and

2

(¢
Woy = = 25(1-v0) (4.41)
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Introducing (4.39) — (4.41) to (4.38) subsequent expression is obtained
k=1 (4.42)

For bending on the plane of maximum tension, the same values like for
torsion are obtained, so it is not possible to determine the coefficient 3
with an analytical method. This coefficient can be assorted depending on a
material after non-proportional tests. It could be done for constant-
amplitude fatigue tests with phase shift n/2. The final criterion form (4.34)
takes the form

Weq (1) = BWpg (1) + W, (1), (4.43)

4.2.3 The Criterion of Maximum Parameter of Shear
and Normal Strain Energy Density in the Critical Plane
Determined by the Shear Strain Energy Density Parameter

In this case, the critical plane is determined by the parameter of shear
strain energy density. It is assumed that the critical plane with normal
Nand tangent s is defined as the mean position of one of two planes

where the maximum shear strain energy density occurs. As in previous
case, the equivalent parameter of strain energy density is determined from
(4.34). Next, it is possible to write the amplitude of equivalent strain en-
ergy as a sum of parameters of normal and shear strain energy densities
with weight coefficients B and K.

Analysing the stress and strain state for pure torsion, tension-
compression or bending under constant-amplitude loading, the relation-
ships coupling the coefficients § and k can be determined.

For pure torsion on the maximum shear plane, particular values of the
strain energy density parameter are

W,, =0, (4.44)

Tzaxy _ Tzaxy (1 + V)
2E

Wans =0.5Taxy€axy =0.25TxyVaxy =0.25

(4.45)
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44 4 The Energy Model of Fatigue Life Assessment

Introducing (4.41), (4.44), (4.45) into (4.38), the following formula is
obtained

02120 _ 5 (1)

4.46
2E 2E (4.46)
After transformation the following expression is obtained
6% (1-vC)
p=———— (4.47)
Taxy(1TV)
After introduction of
2
k=ax (4.48)
T axy
the following expression can be obtained
g = K1=VO) (4.49)
(I+v)

Similar calculations can be performed for pure bending or tension-
compression on the maximum shear plane. Particular stresses and strains
on the chosen plane are

Gaxx + Gayy — Gaxx (1 + C)

- = , 4.50
axn 2 2 ( )
Oaxx 04 o (I_C)
T — Yy — Taxx R 451
ERC ; (.51)
_ — — + _ _
'Yaxy — gaxx 8ayy — Gaxx V(Sayy Gayy VGaxx — O-axx(l VC C +V) s (452)
B 2F 2E
R t 8y _ Ouy V04 0y —VO, o, (1-vC+C-V) (4.53)
axn 2 2E 2E
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4.2 The Energy Parameter Under Multiaxial Loading 45

Thus, the subsequent formula is obtained

+ — +C- 2 _ + ()2
Wa = O'SGaxngaxn = 05 Gaxx(l C) . Gaxx(l VC C V): o axx (1 V)(l C) .
i 2 2E 8E
(4.54)
_ _ _C+ 2 + _ 2
Wa s O'S‘Cax Yaxy = 0.5 Gaxx(l C) . Gaxx(l ve-C V) = ° axx(l V)(l C) .
Ul y y 2 2E 8E

(4.55)

Introducing (4.41), (4.54) and (4.55) into (4.38) the following expression is
obtained

2 2 + _ 2 2 _ + 2
Gzaéx (I—VC) = B ° axx(l V)(l C) +x ° axx(l V)(l C) .

4.56
8E 8E (436

After suitable transformations, the relation between the coefficients B and
K is obtained

(1-vC) =B (4.57)

1+n(1-C)* | (1-v)(1+C)’
4 4 '

Thus

41O -BI-C)’(1+V)

(1+C)*(1-v) (4.38)

After introduction of the determined value of the coefficient P the expres-
sion takes the form

- (4-k(1-C)’)(1-vC)
(1-v)(1+C)*

(4.59)
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46 4 The Energy Model of Fatigue Life Assessment

If values of the coefficients B and x are taken into account, (4.37) takes
the form

k(1-vC)
(1+v)

(4-k(1-C)*)(1-vC)
(1-v)(1+C)?

Weq (O = Wi (O + W, (). (4.60)

If C = 0 for smooth elements, (4.60) for such elements takes the following
form [155, 156, 187, 188]

4-BA+v
Weq () =BW, (1) + %Wn (t). (4.61)
Relation between the coefficients B and k and the ratio of normal stress

amplitude (bending or tension-compression) to shear stress (torsion) for
v = 0.3 is shown in Fig. 4.3.

8
4 ~ - /
~ //
N
S
N
o
N
N
N
N\
-4 A
\
N
N\
Oaxx \
8 Taxy
0,5 1 1,5 2 2,5 3
Fig. 4.3. Coefficients  and k for different amplitude ratios o, [Taxy
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4.3 Algorithm for Fatigue Life Assessment 47

4.3 Algorithm for Fatigue Life Assessment

Under multiaxial loading, fatigue life is calculated according to the general
algorithm shown in Fig. 4.4. Particular stages of this algorithm are discussed
below. Special attention was paid to the stages which were not previously
presented in the algorithm describing procedures for uniaxial tension-
compression in the stress description.

The proposed algorithms of fatigue life assessment for elements of ma-
chines and structures under multiaxial random loading have not been well
verified so far and many laboratory tests should be performed in order to
determine the ranges of their applicability in design calculations. Some of
these algorithms have been already verified for chosen materials [132] and
it is necessary to consider if they can be applied to calculation of fatigue
life for other materials. Suitable selection of the multiaxial fatigue criteria
seems be a very important problem. From a review of literature it appears
that many proposed criteria of multiaxial fatigue are based on the critical
plane. How should the critical plane be defined? The model presented be-
low is based on the energy criteria that were presented earlier in this work.

Figure 4.5 shows the general algorithm of fatigue life determination us-
ing the criterion of shear and normal strain energy density parameter on
the critical plane [115, 123, 136, 164].

I 1 Generation or calculation of component histories l
| 2 Direction of thle critical plane |
| 3 Calculation of thelequivalent history |
| 4 Determination (l)f local extrema I
| 5 Cycle clounting |
| 6 Transformation relattlid to the mean values |
| 7 Calculation of the dlamage degree S(T) |
‘ 8 Calculation (|)f fatigue life ‘

Fig. 4.4. Algorithm for fatigue life calculations under multiaxial random loading
when the expected critical plane position is determined with the damage accumu-
lation method
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48 4 The Energy Model of Fatigue Life Assessment

1 Determination of €, (t), €y (1), €, (1), Yiy (1), Oy (D), Oyy (t) and Tyy (t)
| 2 | Calculation of Wy, (t) and Wi (t)

3 Determination of the critical plane and directions of unit vectors 1 and s

4 Calculation of histories of the equivalent strain energy density parameter
| 5 | Determination of the local extrema W, 1o and W o |
| 6 | Counting of cycle amplitudes W,; and W ; |
| 7 | Determination of the transformed cycle amplitudes W,r; = f(W;, W) |
| 8 | Determination of the damage degree S(T,) |
| 9 | Determination of fatigue life T, or N |

Fig. 4.5. Stages of fatigue life calculations under multiaxial loading according to
the energy model

Stage 1

Histories of strain, €(t) and / or stress, o (t) are the input data for fatigue
life calculations. As it was said in Sect. 3.1, they can come from measure-
ments of actual strains or forces and moments, from previous numerical
calculations or computer generation of random sequences with the formed
probabilistic characteristics corresponding to service conditions or ex-
pected states. Such generations and simulation calculations are especially
important under complex loading, when experimental tests are very expen-
sive [92, 93, 126,128, 237].

General models are based on the full matrix of stresses

a
a

Oxx Xy XZ
Cjj =|Txy Oy Ty, (4.62)
Txz T yz Gz
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4.3 Algorithm for Fatigue Life Assessment 49

In the considered case, the plane stress state occurs in the notch root

Oxx  Txy 0
Gjj =|Txy Oyy O (4.63)
0 0 0

It is important to note that in the critical place of stress concentration (in
the considered edge of the weld) the local biaxial stress state with compo-
nents G ., Oyy and Ty can be observed. These local components are ob-
tained by nominal values ,(t) and Tyyn(t), and particular theoretical
stress concentration factors by action of the fatigue notch

Oxx (1) =K 0 n (1), (4.64)

Gyy (1) = oy (1) (4.65)
and

Ty (0 = K Ty n (1), (4.66)

These stresses correspond to nominal strains which can be determined
from the following relationships under elastic conditions:

() t
Exx,n (1) = Xx’n( ) 5 (4.67)
’ E
() t
Eyyn (D)= —VM, (4.68)
E
(¢ t
822,n (t) =-V XXEI( ) > (469)
YXy,n (t) Txy,n (t)
€xy,n (t) = 2 = °G . (470)
Generally, strains can be written as the full matrix of strains
€xx Xy Xz
€ij =|€xy Eyy Eyz 4.71)
€xz 8yz zZ
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50 4 The Energy Model of Fatigue Life Assessment

In the considered case, the plane stress state in the notch root can be ob-
served, so for strains

€xx Xy 0
j =|Exy &yy O | (4.72)
0 0 ¢,
For local strains
(e} t
£ () =(1-CVv)Ky ""]::“(), (4.73)
csxx, (t)
£yy (0= (C=V)Kp —7—, (4.74)
(o] t
£,, () =—(C+v)K, ""E‘() , (4.75)

ny (t) _ Ktthy,n (t) - K Txy,n (t)
2 2 © 26

O (4.76)

For the sharp notch C = v the &,y = 0 is obtained — it results from (4.74) and
means that the plane state is accompanied with the plane strain state. On
the surface on the notch edges (or weld edges) the stresses o, (t) and

Tps (1) can be calculated according to the following equations:

(4.77)

and
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4.3 Algorithm for Fatigue Life Assessment 51

The strains &, (t) and &, (t) are calculated from:

gn(t):in2 €4x (t)+ ﬁln syy(t)+ ﬁn2 sZZ(t)

+ 2inﬁ1n Exy (t)+ 2inﬁn e, (t)+ 2m,n, syz(t)

2
(4.79)

(4.80)

Because of the biaxial stress state on the surface of edges of the notch (or
the weld), the stresses o,(t) and 7,,(t), and the strains ¢, (t) and

€ns (t) —according to (4.77)—(4.78) — can be calculated from:

oy (t)= inzcxx (t)+ ﬁlnzcyy(t)+ 2inrhncxy (t), (4.81)
o () =110, (0+ o, (6)+ ([ m+ 1, Jo (1) (4.82)
en(t): inz £ (t)+ ﬁlnz ayy(t)+ ﬁn2 <°,Zz(t)+2inmrl sxy(t), (4.83)

Stage 2
If the histories of stresses and strains in a plane defined by direction co-
sines are known, it is possible to define histories of the strain energy den-
sity parameter, using (4.81)—(4.84). It should be noted that in the further
part of strain in direction of axis y, &,y are neglected as they are not signifi-
cant because stresses in this direction are zero, 6,,=0.
All the mentioned energy criteria of multiaxial fatigue — (4.43) and
(4.61) — use the normal, W, , and shear, W, strain energy density parameter.
The normal strain energy density parameter according to (4.36), (4.81)
and (4.83) can be written as:
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52 4 The Energy Model of Fatigue Life Assessment

W, (1) = 05[1 (t)+1m, %0, (t)+ 21 M, (t)].
[i, 2. (t)+ﬁ1n28yy(t)+zinmngxy(t)]
sen{fl, 20, (1) i, 20, (0)+ 21,y o (1),

i, 26 (1)+ 1, 26, (1)+ 21, e, (O (4.85)

where stresses Gy (t), Oyy(t), Txy(t) and strains &y (t), €yy(t), yxy (t) are

the local values according to (4.66), (4.73), (4.74) and (4.76), respectively.
The shear strain energy density parameter — according to (4.35), (4.82)
and (4.84) — takes the form:

W,y (1) =0. 5[1 1,0 (0+ 1o, (0)+ 1, + i, )y (0]
[1ns SO iige 0+ (,m, + i, ey (0]
sgn{[inis XX( O+ i io (0+ (L, + 1y oy (0)].

i e (04 e (0+ (L, + iy Jey, (0] (4.86)

where the stresses Gy (t), Oyy(t), Ty (t) and the strains €, (t), €y (1),
Y xy(t) are local values, according to (4.66), (4.73), (4.74) and (4.76).

Stage 3

In the algorithm for fatigue life assessment, proper determination of the
expected position of the critical plane in the point of the maximum mate-
rial effort is very important. The stress and strain states in the material
belong to the basic factors determining this plane position. Its position is
defined by the direction cosines in, m,,n, (n =, s) of unit vectors
M 1 s occurring in the fatigue criteria, where 7 is perpendicular, and s
is tangent to the critical plane (Fig. 4.6), i.e.

T oo §5=0. (4.87)

The following three methods are proposed for determination of the ex-
pected position of the critical position of fatigue fracture [109, 132,
161, 162]:
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4.3 Algorithm for Fatigue Life Assessment 53

Fig. 4.6. Determination of the versors m and s defining the critical plane

A — the weight function method, presented in [163]. In this method, instan-
taneous values of angles a,(t),B,(t),y,(t) are averaged. These angles

determine instantaneous positions of principal axes of strains or stresses
with special weight functions. Modifications of this method apply Euler
angle averaging and they can be found in [56, 61, 62, 69, 70, 71, 72].

B — the maximum variance method, applied in [109, 132]. In the variance
method it is assumed that the planes where variance of the equivalent his-
tory according to the chosen fatigue criterion reaches its maximum, are
critical for the material. This method does not require much time for calcu-
lations, but statistic parameters of the strain (or stress) tensor components
should be known. The variance method can be effective if the stress tensor
components are stationary and ergodic stochastic processes with the same
statistic character of loading.

C — the method of damage accumulation, discussed in [63, 67, 68, 101,
120, 133, 142]. Here, fatigue damages are accumulated in many planes of
the given material point and the plane where the damage degree is maxi-
mum (i.e. where fatigue life is minimum) is selected. In the case when the
assumed direction of the critical plane coincides with the criterion applied
for fatigue life calculation, not only the expected critical plane direction is
obtained but life as well. This method is more and more applied at present.

In the case of the method of damage accumulation and the variance
method, their success depends on selection of a proper fatigue criterion
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54 4 The Energy Model of Fatigue Life Assessment

and a step of angle change discretization. The optimisation methods accel-
erating determination of the expected position of the critical plane are also
applied. The critical plane and the fracture plane should be, however, dis-
tinguished. They are not always the same planes. Figure 4.7 shows the
cracking models. In model I, normal stresses are responsible for fatigue
cracking, in models II and III shear stresses cause cracking. There are ma-
terials where both shear and normal stresses are responsible for cracking.
Then, it can be defined as the mixed model. The elastic-brittle materials
crack according to model I, and the elastic-plastic materials — according to
models II or III.

The model of fatigue damage accumulation used in this paper was veri-
fied many times for stress, strain and energy models.

Direction cosines 1 T],ls,ms of vectors 1 and §, occurring in
formulas for the normal or shear strain energy density parameter, (4.85)
and (4.86), are under the plane stress state defined by one angle o in the

following relationships:

A A

1n =cosa, m, =sina, 1

=-sina, mg =cosa. (4.88)
Under random or variable-amplitude loading, a damage degree is calcu-
lated according to the algorithm shown in Fig. 4.8, but it is necessary to
assume a suitable criterion of normal or shear strain energy density pa-
rameter, (4.85) or (4.86). From the previous considerations [156] it appears
that the criterion assuming the plane determined by the maximum parame-
ter of normal strain energy density, as the critical plane is valid for cast
iron, i.e. a cast brittle material. Whereas, the criterion defined on the plane
of the maximum parameter of shear strain energy density should be ap-
plied in life calculations for steels and non-ferrous metal alloys.

Model Il Model IlI

Fig. 4.7. Models of fatigue cracking [23]
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4.3 Algorithm for Fatigue Life Assessment 55

’3-1- Generation or calculation of Cjj v, & ©G,j=xy,2) |
| 3.2 Calculation of t}‘lle equivalent history |
| 3.3. Determination (l)f the local extrema |
[34. Cyclel counting |
I 3.5. Transformation relllted to the mean values |
|
3.6. Calculation of a damage degree S(T,)
|
37. Calculation of the maximum damage degree S(T,) = mﬁa)g({S(To)}

Fig. 4.8. Algorithm for determination of the critical plane direction by the normal
or shear strain energy density parameter with the method of damage accumulation

The above algorithm becomes simplified under constant-amplitude
loading. In such a case, it is necessary to determine the energy parameter
history only for one cycle (one period T). If the normal strain energy den-

sity parameter is applied for determination of the critical plane, W, (t) for

one cycle only should be calculated. Then, amplitude of the normal strain
energy density parameter W, is

W,

cqa = Wna = max W, (t,0). (4.89)

Equation (4.89) defines a position of the critical fracture plane expressed
by ae= a. The critical plane is defined by the maximum equivalent ampli-
tude of the normal strain energy density parameter W , .
If the shear strain energy density parameter is applied for determination

of the critical plane, it is necessary to calculate W, (t) for one cycle.

Then, amplitude of the shear strain energy density parameter is W, , and

the shear strain energy density parameter is

Weg,a = Wisa = max W (t, ). (4.90)

T,a

As in the case of the normal strain energy density parameter, Eq. (4.90) de-
fines a position of the critical fracture plane expressed as o= a. The critical
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56 4 The Energy Model of Fatigue Life Assessment

plane is defined by the maximum equivalent amplitude of the shear strain
energy density parameter W ,.

Stage 4
When the critical plane position is determined, it is necessary to determine
the equivalent parameter of strain energy density on the critical plane.

In the case of the critical plane defined by the shear strain energy den-
sity parameter (4.86), the equivalent strain energy density parameter (4.61)
can be defined as

W, (1) = 05[1 )+, 2oy (t)+ 21, T (t)]

[1 e (1) 10, ()+21nmnsxy(t)]
O (t)+

[ 1, (O+ i, (0)+ (i, + 1o, e, ()] (491)

In the case of the critical plane defined by the normal strain energy density
parameter (4.85), the equivalent strain energy density parameter (4.43) can
be expressed as

4=BA+V) [; :
Wy (1) =0.5 M (i, 26, 0+, 2
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4.3 Algorithm for Fatigue Life Assessment 57

sgn{[i isGXX )+ ﬁlnﬁ’l ny(t)+(in +isﬁ’ln)’txy(t)],

[inis o (0)+ i e (t)+ (1 ( iﬁqn)sxy(t)]}, (4.92)

where [ is defined by (4.49), and for sharp notches (C=v) the following
expression is obtained

B=k(+v) (4.93)

and after introduction of (4.48) into (4.93) it takes the following form

2
_ O axx (Nf)
B= [—Taxy o) J 1+v), (4.94)

where 6,«(Ny) and Ta,(Ny) are fatigue strength under simple loading states
(tension-compression (bending) and shearing (torsion), respectively) ver-
sus a number of cycles. These two fatigue characteristics are often parallel.
Then, it is suitable to substitute the fatigue limit, and finally B from (4.94)
is obtained

]
B = (I+v). (4.95)
Taf

Stage 5
At this stage, extrema of the energy parameter history are determined from
(4.91) and (4.92), like in the case of stress histories.

Stage 6

As it was said, the rain flow method (the envelope method) allows to de-
termine both cycles and half-cycles. They are determined by suitable enve-
lopes (see Fig. 4.2). This method is programmed and cycles are counted by
a computer. Each time, the amplitude and the mean value of a cycle or a
half-cycle are determined. Numerical procedure of cycle counting has been
shown in Fig. 4.3. The same procedure is proposed for the strain energy
density parameter.
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58 4 The Energy Model of Fatigue Life Assessment

Stage 7

At this stage, cycle amplitudes of the energy parameter are transformed in
relation to the occurring mean values of this parameter. Such model was
presented in [77, 78, 79]; however, it is not applied and thus not discussed
in is paper.

Stage 8

There are many hypotheses concerning accumulation of amplitudes of
stress cycles and half-cycles. As in the case of (3.21), it is possible to pro-
pose fatigue damage accumulation for cycle amplitudes of the strain en-
ergy density parameter [55, 58, 59, 64, 65, 66, 102, 103, 105, 106, 116,
122, 136, 154, 179, 180] according to a general formula

J .
3 ti ~for W,; >aW,p
iS1 b N (Wap / Wy)™
S(T,) = ,  (4.96)
k 0.
h ) ! — for W,; <aW,p

i=j+1 No (Wag / W)™
where:
a — coefficient allowing to include amplitudes below W,¢ in damage ac-

cumulation,

m',, — coefficient of the S-N curve slope for the strain energy density pa-
rameter,

W,¢ — fatigue limit according to the strain energy density parameter,

n;— number of cycles with amplitude W,; (two identical half-cycles form
one cycle),

and the remaining notations — as in the stress model (3.20).

Stage 9
After determination of the damage degree at observation time T, accord-

ing to (4.96), fatigue life is calculated

T
T, =—2— 4.97
cal S (To ) ( )
or
N
cal = =20k (4.98)
S(N block )

as for the uniaxial loading state.
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5 An Example of Fatigue Life Evaluation Under
Simple Loading

5.1 Fatigue Tests

Static properties of the considered materials are shown in Table 5.1. Their
tests have been discussed in [224] and other papers. The tests were per-
formed under uniaxial constant amplitudes, variable amplitudes of normal
distribution (Gaussian spectrum) without and with overload under axial
and bending loading with two stress ratios

R = Zmin_ (5.1)

Gmax

under a symmetric cycle (R =—1) or pulsating loading (R = 0). Two kinds
of welds were tested (Fig. 5.1). All the joints were made by one person.
Sheets 1250 mm in length were joined with the GMAW method; 6-21 lay-
ers were put on, depending on the native material and its thickness. The
specimens were cut with the plasma method, radii and transition angles in
the notch root were determined for 12 specimens and 4 sections.

The theoretical notch coefficient for welded joints depends on the sheet
thickness, the radius in the notch root and the angle of weld face inclina-
tion. Procedure of determination of theoretical notch coefficients is pre-
sented in many papers, for example [182, 183, 185].

Table 5.1. Static properties of steels

Steel E,GPa R,, MPa Ry, MPa

S355N 206 560 378
S355M 206 524 422
S680Q 206 868 784

S960Q 206 1072 998
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60 5 An Example of Fatigue Life Evaluation Under Simple Loading

The theoretical notch coefficient for butt welds (Fig. 5.2) can be deter-
mined from

t
P

2

Kt = 1+b1[

tlhﬂﬁmwﬂg
p

b,
] 1+(ao+a1 sin@+a, sin29+a3 sin36{—

(5.2)
The constants from (5.2) are presented in Table 5.2.

(a)

100
)

(b) 500

100
D)) )

1)

-

t

Fig. 5.1. Geometry of the tested welded joints: (a) butt welds, (b) fillet weld with

the transverse stiffeners
DoV

Fig. 5.2. Geometry of the butt welds joint for determination of the theoretical
notch coefficient
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5.1 Fatigue Tests 61

Table 5.2. Coefficients in (5.2) depending on loading [8]

Coefficient a, a a, as b, b, I 1, I3
Loading
axial 0.169 1.503 -1.968 0.713 -0.138 0.213 0.249 0.356 6.194

bending  0.181 1.207 -1.737 0.689 —-0.156 0.207 0.292 0.349 3.283
0
p

t

Fig. 5.3. Geometry of the fillet weld with the transverse stiffeners for determina-
tion of the theoretical notch coefficient

For the fillet joint with the transverse stiffeners (Fig. 5.3), the theoretical
notch coefficient can be determined from the following equation

P; Ps
K{=mg +|1+m, (ij +ms(sin )P+ |(sin 0)P [L] . (5.3)
P P

The constants from (5.3) are given in Table 5.3.

Next, coefficients of stress concentration K; were determined and after
statistical processing they were presented in Table 5.4. The specimens of
30 mm thickness were tested under bending, and the specimens of 10 mm
thickness were tested under axial loading (tension-compression).

Table 5.3. Coefficients in (5.3) depending on loading

Coefficient m, m, ms ps3 P4 ps Ps
Loading
axial 1.538 1455 -2.933 0.208 1213 2.086 0.207

bending 1.256 12.153 -3.738 0.154 0.481 1.723 0.172
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62 5 An Example of Fatigue Life Evaluation Under Simple Loading

Table 5.4. Coefficients of stress concentration K;

Steel S355N  S355M  S690Q  S960Q
transverse stiffeners (t =10 mm) 4.78 3.67 3.79 4.27
butt welds (t= 10 mm) 2.06 2.47 2.69 2.22
transverse stiffeners (t=30 mm) 5.20 6.03 4.24 6.20
butt welds (t = 30 mm) 2.82 3.13 2.67 3.02

5.1.1 Tests Under Constant-amplitude Loading

After analysis of experimental data obtained under uniaxial cyclic loading,
all the data obtained under axial loading and plane bending were collected
in two separate groups. From the following equations

Gy =KaOun (5.4)
and

6, =Ko (5.5)

a
the amplitudes of pseudoelastic local stress for axial loading and plane
bending are obtained, respectively. Transition from the nominal system to
the local system using the theoretical coefficient of stress concentration
has been shown in Fig. 2.6.

The ASTM standard [9] was applied for all the materials and both kinds
of welded joints. As a consequence, the following regression equations S—
N in the Basquin notation (3.2) for axial loading is obtained

lgN=11.390-2.2801go, for R=-1 (5.6)
and
lgN=11.800-2.4831gc, for R=0. 5.7

Table 5.5 presents test scatters for particular kinds of loading for the sig-
nificance level o = 5% and for two standard deviations. From analysis of
the data in Table 5.5 it appears that the mean scatter band for cyclic tests
has the coefficient close to 4. Interpretation of the data is shown in Figs.
5.4 and 5.5. From the figures it appears that all the materials both kinds of
welded joints for particular stress ratios (R = —1) and (R = 0) can be ap-
proximated with use of one fatigue curve S—N.
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5.1 Fatigue Tests 63

Table 5.5. Scaters of fatigue tests in relation to the S—N curves for simple loading
states

No Type of loading R sTn Tn (0=5%) Tn(2s)
1 Axial loading -1 1.919 3.878 3.838
2 Axial loading 0 2.133  4.266 4.266
3 Plane bending -1 2.208 4.579 4416
4 Plane bending 0 1.581 3.257 3.162
5 On the average 1.710  3.995 3.920

Here, sTy is standard deviation of the scatters.

Similar analysis can be done for the plane bending

IlgN=12.794-2.6271gc, for R=-1 (5.8)
and
lgN =13.304-2.8351go, for R=0. 5.9

Under axial loading from (5.6) and (5.7), the fatigue limit for pseudoelastic
amplitudes of local stresses are c,p, = 172 MPa and 176 MPa for R = -1

and R = 0 respectively for N=2- 108 cycles. Figures 5.6 and 5.7 show the

5000 -+
i 0,= Klacan
MPa ® S355N - butt welds
B S355M — butt welds
T 4 S690Q - butt welds
A S960Q - butt welds
2 p O S355N —tran. stiff.
000 B S355M — tran. stiff.
“ € S690Q - tran. stiff.
™~ S A 5960Q - tran. stiff.
1000 —
500 +
200 A
Constant-amplitude load NN
R=-1 i
Axial load Ny cycles |
100 T T IIIIIII T T IIIIII] T T IIIIIII T T IIIIIII
108 10* 10° 108 107

Fig. 5.4. Fatigue curves S—N for axial constant-amplitude loading for the consid-
ered materials and specimens under symmetric loading
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64 5 An Example of Fatigue Life Evaluation Under Simple Loading

test results for bending according to (5.8) (R = —1) and (5.9) (R = 0).
Under plane bending from (5.7), The fatigue limit for pseudoelastic local

stresses is G ,, =296 MPa under N =2- 108 cycles. Fatigue strength does

not depend on the material, but on a loading type (axial or bending). In the
local stress system, influence of geometry cannot be seen, either. From
Fig. 5.4 — (5.6), (5.7), Fig. 5.6 — (5.8) and Fig. 5.7 — (5.9) it results that the
mean stress does not influence the fatigue life, probably because of the ex-
isting high residual stress, found during other measurements shown in
[224].

5000 ] Gﬂ = Kta Gan

MPa ® 5355N - butt welds
B S355M — butt welds
A S690Q - butt welds
4 5960Q - butt welds
2000 O S355N — tran. stiff.
O S355M — tran. stiff.
4 5690Q - tran. stiff.
A 5960Q - tran. stiff.

1000

500

. \&m:we MPa
200 A

Constant-amplitude loading i
R=0 .
Axial loading N¢ cycles 9
100 T T IIIIIII T T IIIIIII T T IIIIIII I T IIIIIII

103 10* 10° 108 107

Fig. 5.5. Fatigue curves S—N for axial constant-amplitude loading for all the mate-
rials and specimens under pulsating loadings
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5000 | 04=KyOan @ 355N - butt welds
- MPa Il S355M - butt welds
€ S690Q - butt welds
N A 5960Q - butt welds
(O $355N - tran. stiff.
2000 - 0 S355M - tran. stiff.
€ S$690Q - tran. stiff.
A S960Q - tran. stiff.
1000 —
500 - Q\ G4 =296 MPa
: o
N
e > N
Constant-amplitude loading N > N
200 R=-1 1 N
Plane bending N
N; cycles |
100 T |l|||||| T |l|||||| T IIIIIII| T ||||||TI
103 104 10° 108 107

Fig. 5.6. Fatigue curves S-N for cyclic plane bending for the tested materials and
specimens under symmetric loading

63=Kip Gan
0007 mPa W S355M-b
i - butt welds
A S690Q - butt welds
1 . € S960Q - butt welds
AN O S355N - tran. stiff.
2000 . B S355M — tran. stiff.
€ S690Q - tran. stiff.
A S960Q - tran. stiff.
1000 ]
- G, =295 MPa
500
A . A
---------------- A
Constant-amplitude loading AN
200 - R=0 . )
Plane bending
Ng¢ cycles
100 T IIIIIII| T IIlIIII| T IIIIIII| I IIIII'IT|
108 104 105 108 107

Fig. 5.7. Fatigue curves S—N for cyclic plane bending for the tested materials and
specimens under pulsating loading
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66 5 An Example of Fatigue Life Evaluation Under Simple Loading

5.1.2 Tests Under Variable-amplitude Loading

In the case of Gaussian distribution of cyclic load amplitudes, the sequence
length is Nyjock = 5-10* cycles. In the case of the overload, overloads with a
number of cycles Nop = 10° are randomly distributed in the basic band, and
the total spectrum length is 5-10* cycles, like for loading without over-
loads. As for the generated overloads, the ratio of their maximum values to
the maximum value in the block of Gaussian loads is 1.4. Figure 5.8 shows
a sequence of variable-amplitude loads with and without overloads versus
the accumulated number of cycles n;.. This sequence concerns normalized
loads in Fig. 5.8a (symmetric loading) and Fig. 5.8b (pulsating loading).

Gauss
= = = = overloads
(o]
£
el
®©
kel
el
(0]
N
©
€
£
(o]
2
(b)
Gauss
— — = = overloads

Normalized loading

Nic,

103 5104

Fig. 5.8. Sequence of variable-amplitude loading with and without overloads,
(a) symmetric loading, (b) pulsating loading versus the accumulated number of
cycles n;,
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5.2 Verification of the Results Obtained Under Variable-amplitude Loading 67

5.2 Verification of the Results Obtained Under
Variable-amplitude Loading

Calculations were performed in order to compare calculation and experi-
mental lives. The first such calculations were presented in [112, 228]. As it
was said, large scatters of the fatigue test results were found. The scatters
for cyclic tests were determined in the previous chapter. From the obtained
data it appears that the scatter band of the cyclic test results has the coeffi-
cient 4. The calculated and experimental fatigue lives are presented in
Figs. 5.9, 5.10 and 5.11. The calculation results are shown in Table 5.6.
Many results are included into the scatter band with coefficient Ty = 3, but
more of them are included into the scatter band with coefficient Ty = 4, but
around the mean damage Ty = 1. It means that the sum of most actual

damages is included into the band
/Ty < Ty =1 <Tx. (5.10)

It concerns more than 95% of the considered data.

Table 5.6. Scatters of the fatigue test results related to S-N curves for simple
loading states

Cyclic tests Variable-amplitude tests
No Type of loading R TN Tn (28) TN Tn (29)
1 Axial loading -1 1 3.838 1.018 4.169
Plane bending -1 1 4416 1.143 4.385
3 Plane bending 0 1 3.162 1.449 3.750
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8 | |
10 = Lo Lo | NN | R I//lllllll=
= L E
Neay E 14,7 E
cykle ] Gauss g e
, B S355M - butt welds AL G
10" 5 ¢ s690Q-butt welds ’ 3. "; =
= A S960Q - butt welds ; Lo F
] B S355M — tran. stiff. } v ’ C
6 € S$690Q - tran. stiff. - ./
10° 5 A s960Q-tran.stifl. % =
1 Gauss z przeciazeniami &S 4 E
] A * C
] P S355N — butt welds - C
5 < S355M - butt welds ‘.
10°3 & seo0q-buttwelds 3
4 ¥ S960Q-buttwelds E
b S355N — tran. stiff. . . . . B
- > ', Axial variable-amplitude loading |-
4 <] S355M — tran. stiff. R=-_1
10 = = $690Q - tran. stiff. =
E Y S960Q - tran. stiff. E
. ,. C
. % Nexp Cycles
103 T II/IIIII| T IIIIIII| T IIIHII| T IIIIII| T TTTTTT
10° 10* 10° 106 107 108

Fig. 5.9. Comparison of calculated and experimental fatigue lives for variable-
amplitude axial loading

108 — L L1l L 1 IIIIIlI] 1 IIIIIII| I' IIIIIII_
N, va -
- 7, -
cycclzs ] Gauss B yn
107 @ S355M - butt welds ’
3 B S690Q - butt welds E
a A S960Q - butt welds -
] B S355M — tran. stiff. P B
. ¢ 5690Q - tran. stitt. K,
—] e —
10 3 A S960Q - tran. stiff. ", g E
E s 4 &
3 Gauss with overloads 7 % -
i P S355N — butt welds o B
105 — <« S355M — butt welds L N
E & $690Q - butt welds %" 3
m ¥ S960Q - butt welds .-~ -
i P> S355N - tran. stiff. C
4 <] S355M — tran. stiff. Variable-amplitude bending
1074 4 s6900 - ran. st R=—1 3
37 ¥ S960Q - sp. z zebr. C
] o C
] e Nexp Cycles -
3 s
10 T IIIIIII| T IIIIIII| T IIIIIII] T IIIIIII| T TTTTT
108 104 10° 108 107 108

Fig. 5.10. Comparison of calculated and experimental fatigue lives for uniaxial
variable-amplitude bending

www.iran—mavad.com

Slgo unigo yole @250



5.2 Verification of the Results Obtained Under Variable-amplitude Loading 69

108 — L1l L Ll 1 IIIIIIII 1 IIIIIII_
= T, E
Ncal E E
cycles ] L
7
10 H Gauss E
3 M S8355M - butt welds -
1 @ s690Q - butt welds B
106 A S960Q - butt welds ,
"H O S355M - tran. stiff. o £
1 ¢ 5690Q - tran. stiff. ., ~ =
. B , 7 -
1 A $960Q - tran. stiff. . B
7,0
10% o Gauss with overloads ,/,//' =
3 ¢ s690Q-buttwelds . E
1 ¥ s960Q - butt welds , 7 C
7 4 SB90Q - tran. stiff. .- -
104 = ¥5690Q - tran. stiff, Variable — amplitude bending |
EP R=0 g
7.0 C
. . C
. e Ney, cycles |
7.0
103 T fl,IIIIII T IlIIIIlI T IIIIIII| T IIIIlIII T T TTTTIT
108 10* 105 108 107 108

Fig. 5.11. Comparison of calculated and experimental fatigue lives for uniaxial
variable-amplitude bending
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6 An Example of Fatigue Life Evaluation
Under Complex Loading States

6.1 Fatigue Tests

Experimental verification was based on fatigue tests performed by Sonsino
[158, 165,217, 220, 221, 227], Witt [240, 241, 242, 243] and Kiippers [86,
87, 88, 113, 114, 226]. Table 6.1 presents mechanical properties of the
considered materials (steel StE460 and aluminium alloy AlSilMgMn T6).
Figure 6.1 shows geometries of the tested specimens.

Welded joints were tested under pure bending, pure torsion and bending
with torsion, in- and out-of-phase (90°). Under combined bending with tor-
sion, a ratio of nominal shearing to bending stress was determined for tests
performed by Sonsino and Kiippers

Tan _ )58 (6.1)

Gan
and for tests by Witt

Ta_ Refan _g . (6.2)
Ga KO

Table 6.1. Mechanical properties of the tested materials

Material E \Y Ros Rn As
GPa MPa MPa %
StE460 (Sonsino) 206  0.30 520 670 25
StE460 (Witt) 192 030 466 624 28.7
AlSilMgMn T6 (6082 T6) (Kiippers) 713 0.32 315 332 13
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72 6 An Example of Fatigue Life Evaluation Under Complex Loading States

Table 6.2. The calculated radii and stress concentration factors for notches

Type of welded joint Preat MM Ky Ky

Flange-tube a (Sonsino)  0.45 393 1.85
Tube-tube (Sonsino) 0.45 242 1.77
Flange- tube (Witt) nodata 2.20 1.32
Flange-tube (Kiippers) 17 1.62 1.14
Tube-tube (Kiippers) 1.7 1.68 1.21

where pre, is an actual mean radius in the notch root.

Analysis of tests performed by Sonsino was done for rough specimens, and
in the case of Witt’s tests machined specimens were considered. Thus, the
notch coefficients for Witt’s tests are lower than those for Sonsino’s tests
(see Table 6.2). Table 6.2 shows comparison of all the notch coefficients
for fictitious radii and stress concentration factors for actual radii. All the
coefficients were defined by calculations with the finite element method
for particular radii and constant angle of the weld face [217].

The stress concentration factors included in Table 6.2 confirm the
known relationship [219, 225, 249]

K > Ky > Ky (6.3)
In the case of rough welded joints, the stress concentration factor is a func-

tion of the radius in the notch root. From calculations, the relationships for
tube-flange joints for bending were obtained

log Ky, = 0.505 — 0.267 log p
(6.4)

and torsion
log K'y=0.215-0.151 log p. (6.5)

Similar relationships were obtained for tube-tube joints for bending and
torsion, respectively

log K’ = 0.299 — 0.235 log p (6.6)
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6.1 Fatigue Tests 73

Table 6.3. The calculated fictitious radii and stress concentration factors for
notches

Type of joint  p* mm pg,mm Ky pemm Ky

Flange-tube 4.0 1.16 3.11 0.40 1.88
3.5 102 321 035 192
Tube-tube 4.0 1.16 1.92 0.40 1.79
3.5 1.02 1.98 0.35 1.83
and
log K’y =0.181 —0.181 log p. (6.7)

Then, stress concentration factors were determined for bending and tor-
sion, the substitute value of microstructure p* = 0.4 mm was assumed.
Such assumption is often made for constructional steels. Additional calcu-
lations were performed for p* = 0.35 mm, according to Fig. 2.9. Next, ac-
cording to (2.12) and the Huber-Mises-Hencky hypothesis, fictitious radii
prwere determined (see Table 6.3). From the data presented in Table 6.3 it
appears that influence of p* = 0.35 mm and 0.4 mm on determination of
stress concentration factors is relatively small. Thus, the universal value p*
= 0.4 mm is recommended. From the same table it also results that differ-
ent fictitious notch radii are obtained for bending and torsion.

After the recalculation of the values from the nominal system to the lo-
cal system with the use of theoretical notch coefficients for bending and
torsion a new S—N characteristics was obtained, i.e.

logNf =A-m-logo, (6.8)
and

logNy =A; —m_ -logt,, (6.9)

determined on the basis of the test results through regression analysis
according to the ASTM standard [9]. The determined parameters of the
fatigue curves S—N are given in Table 6.4, where m is inclination, and
k is determined as

Ga(Nf)

K= N

(6.10)
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74 6 An Example of Fatigue Life Evaluation Under Complex Loading States

Table 6.4. Parameters of the S—N curves in the local system for tested joints
for R =-1

Welded joint A m r A, m, I, k

Flange-tube (Sonsino) 17.034 4.306 0.965 25.782 8.233 0.974 1.65*
Tube-tube (Sonsino)  16.342 4.207 0.968 - - - 1.65*
Sonsino — total 15.015 3.658 0.940 25.782 8.233 0974 1.36*
Flange-tube (Witt) 16.199 4227 0.982 24.033 7.435 0.958 1.74**
Flange-tube (Kiippers) 15.615 5.124 0.918 14.598 5.159 0.897 1.62**
Tube-tube (Kiippers) 17.324 5.541 0.847 19.895 8.107 0.390 2.23*%*

*N;p=3-10° cycles
#*¥N; = 5-10° cycles

(a)

A
ge—
o
& L 2 2
Q = o 5
;\\ v
P
A
’ 240 -
. 265 -
(b)
. 180 R
10
NN ; 7
(<)) o| o
) -0 [e0]
: [ee] © [ce]
— Q Ql Q
Q\ A B \4
480 P

< >
< >

Fig. 6.1. Geometries of welded joints (a) flange-tube (FT), (b) tube-tube (TT)
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6.1 Fatigue Tests 75

All the experimental data for flange-tube and tube-tube specimens are shown
in Figs. 6.2, 6.3, 6.4, 6.5, 6.6. According to the standards [38], a slope of the
S—N curves m = 3, is typical for welded joints (see Sect. 1.1). As it can be seen
in Table 6.4, under bending inclinations (m = 3.658-5.541) were obtained,
and they were equal to the recommended inclination (m = 5). It was shown in
the next figures as the reference scatter band for fatigue test results obtained
under more complex loading. The obtained conformity shows whether the
method of evaluation of the results obtained under complex loading is suitable
for formulation the equivalent parameter under the fatigue damage.

Table 6.5 presents scatters of the fatigue test results related to the deter-
mined S-N curves for pure bending. In lines 1-5 there are scatters for par-
ticular fatigue tests. Line 6 presents the mean values calculated on the basis
of scatters for all the tests. As for the Sonsino’s tests, the total characteristic
has been determined and it is shown in line 7. It can be seen that the mean
scatter equal to 1 was obtained in all the cases. If theoretical notch coeffi-
cients based on the fictitious notch radius in the welded joint coincide with
the fatigue one (line 8), then the mean scatters for flange-tube and tube-tube
joints (line 9) are equal to 1 in relation to characteristics determined from the
total characteristic of the considered welded joints. The mean standard de-
viation sTy 1s 1.65, two standard deviations are 2sTx = 3.331. Let us notice a
similarity with the often assumed scatter band band with the coefficient 3.
For the significance level a = 5%, the mean scatter is Ty = tsTnse,n = 3.748.
Lower scatters can be observed for steel joints, and higher scatters are for
aluminium joints. The scatters at the level 2sTy are shown in Figs. 6.2, 6.3,
6.4, 6.5, 6.6, 6.7. All the calculation results are compared with those scatters.

From the calculation results presented in Table 6.5 it appears that in a
complex case or under variable-amplitude loading the considered algo-
rithm can be assumed as correct, if the calculation results are included into
these scatter bands.

Table 6.5. Scatters of the fatigue test results related to S—N curves for bending

No Welded joint TN sTx Ty (0=5%) Tx (2sTy)
1  Flange-tube (Sonsino) 1 1.641 3.878 3.282
2 Tube-tube (Sonsino) 1 1.455 3.101 2.910
3 Flange-tube (Witt) 1 1492 3.172 2.992
4 Flange-tube (Kiippers) 1 1.675 4.099 3.350
5 Tube-tube (Kiippers) 1 2.061 4.491 4.121
6  All the joints together 1 1.665 3.748 3.331
7  Sonsino — total 1 1.758 3.687 3.565
8  Flange-tube (Sonsino) related to total 1.738 1.652 4.107 3.304
9  Tube-tube (Sonsino) related to total  1.282  1.521 2.732 3.042
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76 6 An Example of Fatigue Life Evaluation Under Complex Loading States

Figures 6.7 and 6.8 show the weighed amplitudes of m degree for ran-
dom tests of steel and aluminium welded joints [107, 157]. The amplitudes
expressed by the following equation are most often applied by researchers

1/m

Cpy = | —r| . (6.11)

From Fig. 6.7 it appears that the weighed amplitudes for steel welded
joints under bending are included into the scatter band for cyclic bending.
From Fig. 6.8 it results that the weighed amplitudes for welded aluminium
joints under bending are not included into the scatter bend for cyclic bend-
ing. Thus, the simple Palmgren-Miner rule is probably not valid in such a
case.

MPa Ga,n: Ta,n .
@ bending
B torsion
1000 — A bending with torsion (¢ =0°)
] ¥V bending with torsion (¢ =90°)
500
. . Scatter band for
200 - - pure bending
w ’
100 —
T N; cycles
50 T T T T T T T T T T T T
108 104 10° 108 107

Fig. 6.2. Experimental data for flange-tube welded joints FT according to tests by
Sonsino [217]
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Oan @ bending
MPa A bending with torsion (¢=0°)
¥ bending with torsion (¢ =90°)
1000 7
500 o
T scatter band for pure
~@ bending
200 -+ A .
v LS
100 Yw via
7 N; cycles A
50 T T IIIIII| T T IIIIII| LI IIIIII| T T IIIIII|
103 10% 10° 108 107

Fig. 6.3. Experimental data for tube-tube welded joints TT according to tests by
Sonsino [217]

1000 —: Gan Tan
MPa - scatter band for pure
N bending
500 -
200
100 —
50 o
i ® bending
7 W torsion
A bending with torsion (¢ =0°)
20 ¥ bending with torsion (¢ =909)
N; cycles
10 T IIIIIIII T ||||ll|| T IIIIIIII T IIIIIIII
10° 10 108 108 107

Fig. 6.4. Experimental data for flange-tube welded joints FT according to tests by
Witt [240]
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100 —
N Ga,nv Ta,n
MPa - .\\\\ scatter band for pure
o bending
b |
50 v
- v C °
S
T VAN & g
X
20 A
® bending
M torsion
A bending with torsion (¢=0°)
¥ bending with torsion (¢ =90°)
N; cycles
10 T IIIIIII| T IIIlIII| T IIIIIII|
104 10° 108 107

Fig. 6.5. Experimental data for flange-tube welded joints FT according to tests by

Kiippers [86, 88, 226]

100 Oa,n Tan
MPa |
50 -
|
_ scatter band for pure
bending
20
® bending
Il torsion
A bending with torsion (¢ =09)
¥ Bending with torsion (¢ =902)
Nf Cykle
10 T IIIIIIII T IIIIlIII T IIIIIIII
10* 10° 10° 107

Fig. 6.6. Experimental data
Kiippers [86, 88, 226]

for tube-tube welded joints TT according to tests by
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1000 —
J Cawm T
q Tawn awn Scatter band for pure
500 | MPa pending
100
100 —
50 -
| @® bending
71 I torsion
A bending with torsion (¢=0°)
20 4 v bending with torsion (¢ =902%)
N; cycles
10 T IIIIIII| T IlIIlII| IIIIIIIl
10* 10° 108 107

Fig. 6.7. Fatigue test results for steel welded joints under variable-amplitude load-

ing according to Witt FT [104]

100 —
- Caw,n ~ ~ . )
| ~ scatter band for cyclic bending
MPa
50
20 1 @ bending
A bending with torsion (¢=0°)
V¥ bending with torsion (¢ =90°)
cycles
10 T T 11100 T T T T
10* 10° 108 107

Fig. 6.8. Fatigue test results for aluminium welded joints under variable-amplitude

loading according to Kiippers FT [87]
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80 6 An Example of Fatigue Life Evaluation Under Complex Loading States

Table 6.6. The applied abbreviations

Lp. Type of loading  Calculations related to the Notation  Tests

S-N curve

1 Flange-tube Flange-tube FT Sonsino
Witt
Kiippers

2 Tube-tube Tube-tube TT Sonsino
Kiippers

3 Flange-tube Total characteristics FTc Sonsino

4 Tube-tube Total characteristics TTc Sonsino

6.2 Verification of the Criteria Under Constant-amplitude
Loading

The proposed criteria have been verified and the results of verification
have been presented here. Some abbreviations have been introduced
(Table 6.6).

6.2.1 The Parameter of Shear and Normal Strain Energy
Density on the Critical Plane Determined by the Parameter
of Normal Strain Energy Density

In the following subchapter the verification of the criterion assuming that
the plane determined by maximum parameter of normal strain energy den-
sity in the critical plane is presented. Then, in this plane a sum of the nor-
mal strain energy density parameter (with the weight coefficient 1) and the
shear strain energy density parameter in this plane is determined. As it was
said, the weight (coefficient B) that should be assumed for the shear strain
energy density parameter has not been determinated. Thus, analysis of the

scatter E was performed for steel welded joints, determined according to
(3.33) for all non-proportional tests and different values of the coefficient
B. Values of scatters E versus coefficient p including the shear strain en-
ergy density parameter for steel welded joints are shown in Fig. 6.9. From
this figure it appears that a value of the coefficient f varies within 7-14,
depending on the tests. Its average value of 10 can be assumed.
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6.2 Verification of the Criteria Under Constant-amplitude Loading 81

Figures 6.11-6.17 show the comparison of calculated and experimental
lives for particular tests and for coefficients  determined from Fig. 6.9 in-
cluding the shear strain energy density. It is important to note that for the
tests of tube-flange joints performed by Sonsino (Fig. 6.10), the scatter is
included into the band for pure bending except for torsion. When calcula-
tions are related to the total characteristics (Fig. 6.11), the calculated lives
decrease and exceed the scatter band for cyclic tests. As for tube-tube
welded joints, (Fig. 6.12), only one point for proportional and one point for
non-proportional loading are outside the scatter band for pure bending. It is
important to note that for tube-tube joints there are no tests under pure tor-
sion because the cracks occur outside the joint in the native material. When
calculations are related to the total fatigue characteristics (Fig. 6.13) simi-
lar results have been obtained. As for tests by Witt (Fig. 6.14), the tests re-
sults are similar as those obtained by Sonsino (see Fig. 6.10).

1,2
E o @ FT-Witt
11 @ TT-Sonsino
* > TTc-Sonsino
0,8 — FT - Sonsino
m FTc-Sonsino
0,6 —
9 ® ’
[ )
0,4 —
0,2 — & o
| * °
0
] © °
0,2 —| L 2
| p
'0;4I|I|I|I|I?Ill|l|

0 2 4 6 8 10 12 14 16

Fig. 6.9. Scatters versus shear strain energy density parameters for steel welded joints
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107 3 7
3 Ncal /,
- 7
4
cycle - 735 y
1 [ ) 35 7
4 ,
108 3
3 ' ,// b4
n 7/
§ > A,
_ [ | ' 7 d
4 ,
7
108 3 J »
= , 7
. ’ 4
] . ’
’ 7
i , ,
i P ’
’ 7/
10* - ,/ .’ bending
§ R ///. torsion
17 L A bending with torsion (¢=0°)
T P ¥ bending with torsion (¢ =90°)
7 v
, Nexp
3 Z
10 T ||l||||| T |||||||| T ||||||l| T T TTTTIT
103 10* 10° 108 107

Fig. 6.10. Comparison of the calculated fatigue lives for flange-tube welded joints
(FT) according to the criterion in the plane determined by the normal strain energy
density parameter with the lives obtained by Sonsino

107 3 y
. Ncal /
le .
cycle - 3,5
. it 35 7
4 7
, ®
10% 3 e n ad
= 4 y
. , ,
] , ,
i L A R
T 7 A ,A
P
105 _ . ',/ V v/,
= d .//.
7 % R
| , ,
m 4 ’
s ® -
104 = ,’ /‘ bending
i, @ ,2 M torsion
E ’ P A bending with torsion (¢ =09)
4 e V¥ bending with torsion (¢ =90°)
it Neyp cycles
103 T |I||||||| T |lll||| T |||||||| T T TTTTI
108 10* 10° 108 107

Fig. 6.11. Comparison of the calculated lives for flange-tube welded joints (FTc) ac-
cording to the criterion in the plane determined by the normal strain energy density pa-
rameter with the lives obtained by Sonsino related to the total fatigue characteristics
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107
7 Ncal /
7 /’3,5 A
cycle ~ e
i ’ 3,5 R
/, 4
7 4 @ /,
Se A,
10% - P ®
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: v . e
4 ,,/ ,/
i , A
. ,’ ‘ v , ’
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5 S e e
10°
J 14 //
1 .7 M A7 A
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T ,/' ¥ bending with torsion (¢ =90°)
’ Nexp cycle
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Fig. 6.12. Comparison of the calculated fatigue lives for tube-tube welded joints
(TT) according to the criterion in the plane determined by the normal strain energy
density parameter with the lives obtained by Sonsino

107 3 7
7 Neal 7 A
- 7/
cycle - L 35
- 7
. 35 , 4
N 7
e A. 4
R4 ® ® ,
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0 . // A ,’
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i ,’ v y/
T ,v A,
4
4 ,
— ,, Vs
9 ‘ v /,
e v 4
105 3 /
] A A9 A /A
1 /A e
1 7
17 /, @ bending
- & e A bending with torsion (¢ =0°)
e
b d ¥ bending with torsion (¢ =90°)
e Nexp cycle
10* AT T T T T T T T TTTTT
10 10° 108 107

Fig. 6.13. Comparison of the calculated fatigue lives for tube-tube welded joints (TTc)
according to the criterion in the plane determined by the normal strain energy density
parameter with the lives obtained by Sonsino related to the total fatigue characteristics
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107 = 4
E Ncal y
- A
3,5
cycle - /" 35
6 '/‘ ’//
10 = 7 '. .
3 Y/ v AV‘/
. 4
] [ | | L’ v?
_ e A,
7 v y
d
105 3 Jd '/z/
= ,
. 7 A /’
- 4 ,
4 ’
_ e ,
4 bendin
1049 ,‘ ond
3 ., /z Bl torsion
17 L2 A bending with torsion (p=09)
] i ¥ bending with torsion (¢ =902)
i Nexp cycle
103 T |f|||||| LI 1| N 1 R B R
103 10* 10° 108 107

Fig. 6.14. Comparison of the calculated fatigue lives for flange-tube welded joints
(FT) according to the criterion in the plane determined by the normal strain energy
density parameter with the lives obtained by Witt for equal frequencies of bending
with torsion

In the case of the tests of aluminium joints performed by Kiippers, over-
estimated calculated fatigue lives were obtained for both tube-flange and
tube-tube joints (Figs. 6.15 and 6.16). That overestimation can be even 100
times higher than the experimental value. During these tests, the values of
the coefficient B, including participation of the shear strain energy density
parameter in the critical plane, were not searched because favourable re-
sults had not been obtained for proportional loading.
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10° 3 7
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8 — v A 7’ I 35,7
3 Ah ,/ ,'
3 v ,
] w0
7—_ / 7
R A Ll 7
3 . /
b A A
i B ) 'Y
4 ’
106_5 e e
= 4 ’
- 7 "
] R ,‘® bending
- Ve .
Re ,7 I torsion
1054 L7 .7 A bending with torsion (¢=0°)
p= | 4
17 R ¥ bending with torsion (¢=902)
: 7’
i Nexp cycle
104 T l’lllllll T ||||||I| T ||||||l| T |||||l|| T TTTTTmT
104 105 108 107 108 10°

Fig. 6.15. Comparison of the calculated fatigue lives for flange-tube welded joints
(FT) according to the criterion in the plane determined by the normal strain energy

density parameter with the lives obtained by Kiippers
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Fig. 6.16. Comparison of the calculated fatigue lives for tube-tube welded joints
(TT) according to the criterion in the plane determined by the normal strain energy
density parameter with the lives obtained by Kiippers
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86 6 An Example of Fatigue Life Evaluation Under Complex Loading States

6.2.2 The Parameter of Shear and Normal Strain Energy
Density in the Critical Plane Determined by the Shear Strain
Energy Density Parameter

In this part the criterion assuming the plane determined by the maximum
value of shear strain energy density parameter as the critical plane was
verified. In this plane, a sum of the normal strain energy density parameter
and the shear strain energy density parameter is determined.

Figures 6.17—-6.23 present comparisons of the calculated and experi-
mental fatigue lives for particular tests. After the analysis of the experi-
ment and the calculations it can be stated that in the case of the tests per-
formed by Sonsino for tube-flange joints (Fig. 6.17) the results are
included into the scatter band for pure bending, except for one point for
proportional loading. If the calculation results are related to the total char-
acteristics (Fig. 6.18), the calculated lives decrease like in the case when
the plane of the normal strain energy density parameter was assumed as
the critical plane (see Figs. 6.10 and 6.11). As for tube-tube welded joints
(Fig. 6.19) it is possible to find that only one point for proportional load-
ings and one point for non-proportional loadings are located outside the
scatter band for pure bending, like in the case when the plane determined
by the normal strain energy density parameter is assumed as the critical
plane (Fig. 6.12). Similar results were obtained for the tests related to the
total fatigue characteristics (Fig. 6.20) and in Fig. 6.13. During the tests
performed by Witt, when the plane of the shear strain energy density pa-
rameter was assumed as the critical plane (Fig. 6.21), a little poorer results
were obtained as compared with the case when the plane determined by
the normal strain energy density parameter was assumed as the critical
plane (Fig. 6.14). It concerns, however, only the stress levels close the fa-
tigue limit, where scatters of experimental results are greater. In the case of
torsion, it can be stated that the calculated results from Fig. 6.21 are better
than those in Fig. 6.14.

As for the tests by Kiippers for aluminium welded joints, much better
results were obtained than in the case when the plane of the normal strain
energy density parameter was assumed as the critical plane for tube-flange
joints (Fig. 6.22) and tube-tube joints (Fig. 6.23). Only some points are lo-
cated outside the scatter band for pure bending.
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107 3
= /7
E Neal ’
7 R
cycle o L35 ,
E ’ 35
R4 >,
108 5 ’ v V//
3 e 4
] A,’ A e
/7
- Va ,
_ / ,
. o’
10° = ’ ‘
3 4
E t -
] d R
- 7/
’ 4
. . ,/
7 .
10% — /, /. bending
3.,/ ® ,7 W torsion
Nl ,° A bending with torsion (¢p=02)
T //, ¥ bending with torsion (¢ =90°)
s i Nexp cycle
10 T T T T T T T T IT T T TTTrm
103 10 10° 10° 107

Fig. 6.17. Comparison of the calculated fatigue lives for flange-tube welded joints
(FT) according to the criterion in the plane determined by the shear strain energy
density parameter with the lives obtained by Sonsino
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Fig. 6.18. Comparison of the calculated fatigue lives for flange-tube welded joints
(FTc) according to the criterion in the plane determined by the shear strain energy
density parameter with the lives obtained by Sonsino in relation to the total fatigue
characteristics
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Fig. 6.19. Comparison of the calculated fatigue lives for tube-tube welded joints
(TT) according to the criterion in the plane determined by the shear strain energy
density parameter with the lives obtained by Sonsino
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Fig. 6.20. Comparison of the calculated fatigue lives for tube-tube welded joints (TTc)
according to the criterion in the plane determined by the shear strain energy density pa-
rameter with the lives obtained by Sonsino related to the total fatigue characteristics
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Fig. 6.21. Comparison of the calculated fatigue lives for flange-tube welded joints
(FT) according to the criterion in the plane determined by the shear strain energy
density parameter with the lives obtained by Witt under equal frequencies of bend-
ing and torsion
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Fig. 6.22. Comparison of the calculated fatigue lives for flange-tube welded joints
(FT) according to the criterion in the plane determined by the shear strain energy
density parameter with the lives obtained by Kiippers
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Fig. 6.23. Comparison of the calculated fatigue lives for tube-tube welded joints
(TT) according to the criterion in the plane determined by the shear strain energy
density parameter with the lives obtained by Kiippers

A qualitative (not quantitative) description was used for analysis of the
results shown in Figs. 6.10-6.23. Thus, according to the suggestions in-

cluded into Sect. 3.2, the mean scatters Ty were determined for lives and

the scatter bands Ty were determined under a double standard deviation.
The calculation results are shown in Table 6.7. From the data presented in
this table it appears that if the plane determined by the maximum shear
strain energy density parameter is assumed as the critical plane, less mean
scatters and scatter coefficients are obtained in comparison with the case
when the plane determined by the maximum normal strain energy density
parameter is understood as the critical plane. It is evident in the case of the
tests by Kiippers for welded aluminium joints. Only in one case (the tests
by Sonsino for tube-tube welded joints) a contrary effect can be observed.
However, the differences are small for steel welded joints for both consid-
ered critical planes. Thus, in this case one of two possible critical planes
can be assumed: the plane determined by the normal strain energy density
parameter (like for cast irons), or by the shear strain energy density pa-
rameter (like for steels). Here, it should be noted that the weld structure
has a brittle material character, like for example, cast iron.
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6.2 Verification of the Criteria Under Constant-amplitude Loading 91

Table 6.7. Scatters of the cyclic test results according to the selected criteria

Critical Sonsino Witt Kiippers
plane FT TT FTc TTc FT FT TT

W, TN 2.046 1208 1.236 1.106 1.683  40.365* 64.565*
T 3936 3936 5.047 3900 7.835 3.656*  10.790*
N

W TN 1.538  1.005 1.439 1.340 1.549 1.479 1.330
T 3,162 4,477 4,266 3,954 5,673 4,083 5,129
N

* only proportional loadings

If the plane determined by the maximum normal strain energy density
parameter is assumed as the critical plane, after non-proportional tests, the
value of the coefficient B including a part concerning the shear strain en-
ergy density parameter in the expression for the equivalent strain energy
parameter should be determined. Thus, it is much better to apply the en-
ergy criterion based on the critical plane determined by the shear strain en-
ergy density parameter. This criterion was used for further calculations.

After the comparison of the scatter bands for uniaxial cyclic tests under
pure bending (Table 6.5), when the mean scatter band varies about 3.5 and
under combined bending with torsion with constant frequencies (Table
6.7) it can be seen that under complex loading the scatter band increase in
relation to simple loadings, except for the tests by Sonsino for flange-tube
(FT) welded joints.

6.2.3 The Influence of Different Frequencies of Bending
and Torsion on Fatigue Life

Witt performed also tests under different frequencies of bending, f; and
torsion, f; under the following combinations

f, = 51, (6.12)
and
f; = 0.2f.. (6.13)

The calculated and experimental results for all the cyclic tests are com-
pared in Fig. 6.24, where the assumed number of cycles comes from bend-

ing. For those tests, the mean scatter Ty = 1.306 and the scatter band with

coefficient Ty = 4.667, were obtained. The obtained scatter band is less
than that for tests for equal frequencies (Table 6.7), and greater than that
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92 6 An Example of Fatigue Life Evaluation Under Complex Loading States
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Fig. 6.24. Comparison of the calculated fatigue lives for flange-tube welded joints
(FT) according to the criterion in the plane determined by the shear strain energy
density parameter with the lives obtained by Witt under different frequencies of
bending and torsion

for pure bending (Table 6.5). From the analysis of results it appears that
for loadings with different frequencies the obtained conformity of calcula-
tion and the experiment was very good.

6.3 Verification Under Variable-amplitude Loading

The reported variable-amplitude tests concerned flange-tube welded joints
according to Witt, and aluminium joints according to Kiippers.

The results for steel welded joints are shown in Fig. 6.25. The weighed
amplitude o, according to (6.11) is expressed by

Gaw= 0.370 Gamax. (6.14)

The determined mean scatters are Ty = 1.268, and the scatter band is

Tn = 3.846. The scatters are greater than those for pure bending (Table
6.5), but lesser than those for combined bending with torsion (Table 6.7).
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6.3 Verification Under Variable-amplitude Loading 93

Good results of calculations were obtained as compared with the experi-
mental data.

The results for welded aluminium joints are presented in Fig. 6.26. The
weighed amplitude, o, according to (6.11), is expressed as

Gaw = 0.393 Gumax- (6.15)

The calculated results for pure bending are overestimated in relation to the
experimental results. While searching a description of this phenomenon,
the correction coefficient was applied, like in the Serensen-Kogayev hy-
pothesis. The correction coefficient can be expressed as

aw (6.16)

According to (6.15) and (6.16), b’= 0.393, which means that it is less than
one and close to 1/3. Next calculations of life were performed according to

107 - @ bending 7
N — [l torsion /7
ca < A bending with torsion (¢ =09) // [ ]
“| ¥ bending with torsion (=90, u
cycle -+ y A
_ / ]
/ | | A /
| un, | @
R e 7
/ v ( ] A /
% P ° 7
10° 4 /
] V Ag /
1 ¥ a /
/ A o /
17 35 /
E /7
_ 35 //
| /
/
//
Nexp cycle
108 T |/||||||| T T T T T 1717
10° 108 107

Fig. 6.25. Comparison of the calculated and experimental fatigue lives for flange-
tube welded joints (FT) under variable-amplitude loading according to the crite-
rion in the plane determined by the shear strain energy density parameter with the
lives obtained by Witt
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94 6 An Example of Fatigue Life Evaluation Under Complex Loading States

that modification of the Palmgren-Miner hypothesis. The determined mean
scatters were TN = 1/0.940 = 1.063, and the scatter band was Ty = 4.519,
and in this case the scatters are less than those for tests under pure bending
(Table 6.5) and under combined bending with torsion (Table 6.7). The dif-
ferences are not very high, so it can be assumed that the obtained results
are satisfactory.

107

= 7
7 O bending (b’=1)
N., 2 @ torsion (b'<1) O ,Q{ @)
ca 7 A bending with torsion (p=02) (b'<1) /
-1 ¥ bending with torsion (¢=902) (b’<1) v y
cycle - O/ @ ® /
/ Aa
10° o o // /
] pd v,
7 A
_ .// /
/ /
/ /
10° 3 //
E /é,S /
id 35,7
/
i //
Nexp cycle
10* T I{IIIII| T T T T T TTTTT
10* 10° 108 107

Fig. 6.26. Comparison of the calculated fatigue lives under variable-amplitude
loadings for flange-tube welded joints (FT) according to the criterion in the plane
determined by the shear strain energy density parameter with the lives obtained by
Kiippers

www.iran—mavad.com

Slgo unigo yole @250



7 Conclusions

On the basis of the performed analyses and calculations the following con-
clusions can be drawn:
1. In the case of tests under uniaxial cyclic loading it can be stated that:

1.1

1.2

1.3

1.4

It is possible to determine one common fatigue characteristics
for four considered materials.

Fatigue strength does not strongly depend on a type of the con-
sidered welded joint; much greater is the influence of loading
(bending and axial loading)

The calculated sum of damages for normal distribution (Gaus-
sian spectrum) and normal distribution with overloads are in-
cluded into the scatter band with coefficient 3 according to the
Palmgren-Miner hypothesis and with the significance level 5%.
In the considered joints, the mean stress values do not influence
fatigue life; the obtained fatigue curves for symmetric and pul-
sating loadings were almost identical. It probably results from
the existing high residual stresses, previously measured.

2. In the case of multiaxial loading it can be concluded that:

2.1

2.2

Before estimation of multiaxial fatigue history in welded joints
by local stresses and strains, the actual local radius at the weld
edge should be determined. Owing to the fictitious local radius,
what in the worst case for sharp notches p=0 means a crack, the
notch coefficients for bending, Ky and for torsion, Ky can be
calculated. Therefore, it is necessary to define the fictitious
notch radii p; for bending and torsion separately. In the case of
welded steel joints, the radii are pp = 1.16 mm for bending and
pr= 0.4 mm for torsion.

The normal and shear strain energy density parameters in the
critical plane determined by the parameter of shear and normal
strain energy density for steel welded joints give comparable re-
sults. If the plane determined by normal strain energy density
parameter is assumed as the critical plane, it is necessary to de-
fine the experimental weight function including the shear strain
energy density parameter in this plane. Thus, the application of
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7 Conclusions

23

24

the energy criterion defined in the plane determined by the shear
strain energy density parameter is recommended.

In the case of welded aluminium joints, satisfactory results of fa-
tigue life calculations were obtained for the criterion of energy
parameter in the plane defined by the shear strain energy density
parameter. When the energy criterion was applied in the plane
defined by the normal strain energy density parameter, the cal-
culated results were overestimated in comparison with the ex-
perimental ones.

Application of the maximum shear and normal strain energy
density parameter in the critical plane for aluminium welded
joints subjected to variable-amplitude bending with torsion is
right if the Palmgren-Miner hypothesis is taken into account,
and the correction coefficient is used, like in case of the Seren-
sen-Kogayev hypothesis. The correction coefficient is the quo-
tient of the weighed amplitude of the slope degree of the fatigue
curve and the maximum amplitude.
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Summary

The paper presents fatigue life calculations for some chosen welded joints.
The results were verified on the basis of fatigue tests of steel and alumin-
ium welded joints under uniaxial and multiaxial loading states. Uniaxial
loading concern pure tension-compression and alternating bending under
cyclic and random tests of specimens made of steel. One fatigue character-
istic can be determined for four considered materials. From the calcula-
tions it appears that fatigue strength does not strongly depend on a type of
the considered welded joint — it is more dependent on loading type (bend-
ing and axial loading). The calculated sum of damages for normal distri-
bution (the Gaussian spectrum) and normal distribution with overloads is
included into the scatter band with coefficient 3 according to the Palm-
gren-Miner hypothesis at the significance level 5%. In the case of the con-
sidered welded joints, the mean stress value does not influence the fatigue
life. The same fatigue curves have been obtained for symmetric and pulsat-
ing loading.

Complex stress states concern loading under combined proportional and
non-proportional cyclic bending with torsion. Moreover, for aluminium
joints verification was also done under random loading. Evaluating the mul-
tiaxial fatigue histories in welded joints by local stresses and strains, we
must know the actual local radius at the weld edge. Owing to the fictitious
local radius, when — in the worst case — for sharp notches p = 0, it is possible
to calculate coefficients of the notch action for bending, Ky, and for torsion,
Ks. In this order we must determine fictitious radii of the notch pr for bend-
ing and for torsion. In the case of steel welded joints, these radii are
pn= 1.16 mm for bending and ps = 0.4 mm for torsion. The normal and
shear strain energy density parameter in the critical plane determined by the
energy density parameter of normal and shear strain for steel welded joints
gives comparable results. However, if the normal strain energy density pa-
rameter is assumed as the critical plane, it is necessary to determine, in an
experimental way, the weight function including the shear strain energy den-
sity parameter in this plane. Thus, application of the energy criterion de-
fined in the plane determined by the shear strain energy density parameter, is
recommended. In the case of aluminium welded joints, satisfactory results of
fatigue life calculations were obtained for the criterion of energy parameter
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118  Summary

in the plane defined by the shear strain energy density parameter. In the case
of application of the energy criterion in the plane defined by the normal
strain energy density parameter, the obtained calculated fatigue lives were
strongly overestimated in comparison of the experimental results. Applica-
tion of the maximum shear and normal strain energy density parameter in
the critical plane for aluminium welded joints subjected to variable-
amplitude bending with torsion seems to be right under the Palmgren-Miner
hypothesis and application of the correction coefficient, like in the case of
the Serensen-Kogayev hypothesis, which is the quotient of the weighed am-
plitude of the fatigue curve inclination in energy approach and the maximum
amplitude in the history.
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